BUILDING YOUR OWN RPMS

CONNECTING TO THE LAB EQUIPMENT
These steps will help you get started with the exercises:

1. Login to the desktop you are seated at as the user student, with the password student

BUILD FROM SOURCE

Historically, in the Open Source Software community, if you wanted to install a piece of software on your
machine, you would download the source code archive from a repository, compile it, and install it yourself.
Typically the process would look something like this:

* Download FluffyMcAwesome-1.0.tar.gz from provider

. tar xf FluffyMcAwesome-1.0.tar.gz
Extracts archive contents into current working directory, usually creating a directory that matches
the archive name, in our case, FluffyMcAwesome-1.0/

. cd FluffyMcAwesome-1.0
Everything for this software package is stored relative to it's freshly unarchived directory.

. ./configure
Generally, there is a configure script which is used to verify the environment on your machine is
sane (checks for things like the required compiler, libraries, interpreted languages, etc.) and poten-
tially also generates a Makefile.

o make
Compiles the software, but keeps all the compiled parts relative to the current working directory.

* make install
Copies the compiled binaries and libraries from the local directory structure and copies them into
the appropriate system directories.

The reason we use packages for software is that there are several big disadvantages in the method above.

Scale. If this software needs to be on 10 machines, this process is irritating to do. 100 machines obnoxious.
1000 machines, kill me now.

Maintenance. If you need to remove this software, is there a make uninstall? How do we keep other soft-
ware from removing or overwriting the files that were provided by this piece of software? When it comes
time to update, does FluffyMcAwesome-1.1 replace only those files that came with version 1.0, or does it
abandon some files because they’re not needed anymore? When upgrading the software, are you replacing
a library or file that another piece of software relies on?

Taste of Training — Building your own RPMs | Scott McBrien 1

If you were to try and compile FluffyMcAwesome from source, your machine is missing several libraries
required by FluffyMcAwesome. Let’s install those libraries:

[root@desktopX ~]# yum -y install ncurses-devel

ENTER THE PACKAGE

Because of the issues inherent with compiling from source, most distributions now opt for some type of
package management. Red Hat Enterprise Linux uses RPM (RPM Package Manager). An RPM package is
a cpio archive of file content with metadata to describe items like dependencies, tags for the file content, sig-
natures and checksums for the payload of the package, etc. The installed RPM packages are tracked in a
local database (/var/1ib/rpm), so that when an RPM transaction is requested various checks can be per-
formed. For example, is a new package installation trying to replace an existing file owned by another pack-
age; is a package removal going to violate the requirements for another still installed software package?

PACKAGE KNOWLEDGE QUIZ

This area is for you to scribble down some notes on things about RPMs that you find interesting or didn’t
know before our game:

Taste of Training — Building your own RPMs | Scott McBrien 2

SETTING UP YOUR INITIAL BUILD ENVIRONMENT

We are going to be building packages as a non-privileged user, student. DO NOT build packages as root.
During the build process, scripts and a few other things are executed on your machine. You do not want to
run these types of things as root.

Lets start by creating some directory structure in the student user’'s home directory:

[student@desktopX ~]$ mkdir -p ~/rpmbuild/{SPECS, SOURCES,BUILD,RPMS,SRPMS}

SPECS — This is where our RPM . spec files will be placed, more on these files later.
SOURCES — The source code archives of our target software are put here.

RPMS — The compiled RPM packages will be dropped into this directory.

SRPMS — If we build any Source RPMs (SRPMs), they will be placed here.

BUILD — A directory to be used during the RPM build process; it is used as temporary storage.

There is a pre-existing RPM configuration setting that will look for a directory called rpmbuild in a user’s
home directory; the subdirectory structure is standard. Specifically, the /usr/1ib/rpm/macros file has a
macro defined, $_topdir.

Additionally, you will want to verify that the rpm-build RPM is installed on your machine.

[student@desktopX ~]$ yum list rpm-build

If the rpm-build RPM is not installed, as root, install it.

[root@desktopX ~]# yum -y install rpm-build

You'll also need any compilers and software that you would normally need when compiling software bina-
ries, gcc, make, etc.

For our software, FluffyMcAwesome, we also need the ncurses-devel RPM installed. As root, install the

ncurses-devel RPM.

[root@desktopX ~]# yum -y install ncurses-devel

Finally, download the source for FluffyMcAwesome and place it in the SOURCES directory:

[student@desktopX ~]1$ wget

http://instructor.example.com/pub/materials/FluffyMcAwesome-1.0.tar.gz -0
~/rpmbuild/SOURCES/FluffyMcAwesome-1.0.tar.gz

Taste of Training — Building your own RPMs | Scott McBrien 3

Copyright © 2012 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products www.redhat.com
listed are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries.

v1.0-20120529

http://instructor.example.com/pub/materials/FluffyMcAwesome-1.0.tar.gz

OPENING THE .spPEc TEMPLATE

As of Red Hat Enterprise Linux 6, if you use either vi (with vim-enhanced RPM installed) or emacs to
open a new .spec file, the editor will pre-populate the file with a template you can use to help generate the
file’s contents.

[student@desktopX ~]$ cd ~/rpmbuild/SPECS
[student@desktopX ~]$ vi FluffyMcAwesome.spec

We will be talking about the contents of the . spec file in the next few following sections. The template used
by emacs is slightly different than the template provided by vim. The default contents of the template dis-
cussed throughout the document assume that it was opened using vim.

PREAMBLE

The preamble section of your . spec file contains a lot of basic information about the RPM that you are
building. The following table provides information on the preamble items provided in the . spec template
included by vim or emacs:

Preamble Item Definition
Name Name of the RPM you're building. For us, FluffyMcAwesome.
Version The version of the software that is compiled. For us, 1.0 (pulled from

OSS project source).

Release Packager’s ‘version’. Pre-populated with 1%{?dist}, which will expand to
1.el6. This is a field that is there to help you, as the packager, keep your
versioning straight.

Summary One line descriptive blurb about the software provided by the RPM.

Group Deprecated, used to classify this software according to available groups
in /usr/share/doc/rpm-*/GROUPS.

License The type of License that covers the software. Ex. GPLv2, Apache, BSD...

URL Typically the URL for the OSS Project provided by the RPM.

Source0 Name of the archive of source code, generally in the SOURCES directory.

BuildRoot Pre-populated in template. Used for packaging the software files into the
RPM’s file archive.

BuildRequires Files or other software required to be on the machine before this software
can be compiled into the RPM.

Requires Files or other software required to be on a machine installing this RPM.

%description A longer description of the software and/or features provided by the RPM.

Taste of Training — Building your own RPMs | Scott McBrien 4

Let's populate the preamble of our F1luf fyMcAwesome. spec file:

Name: FluffyMcAwesome

Version: 1.0

Release: %{?dist}

Summary : This is both Fluffy and McAwesome

Group: Amusements/Games

License: Copyright Red Hat, Inc. 2012

URL: http://www.sourceforge.net/FluffyMcAwesome

Source0: FluffyMcAwesome-1.0.tar.gz

BuildRoot: %(mktemp -ud %{ tmppath}/%{name}-%{version}-%{release}-
XXXXXX)

BuildRequires: ncurses-devel gcc
Requires: /bin/bash ncurses

%description
FluffyMcAwesome is software that is both Fluffy and McAwesome. Who doesn't
want Fluffy or McAwesome software?!? Now you have both, congratulations.

%PREP

In the $prep stage the build environment is setup. In the default . spec template, it contains a call to
$setup -g which unarchives the Source0 archive into the BUILD directory. If your RPM referenced multi-
ple sources in the preamble (Sourcel, Source2, etc.), they would also be unarchived in the BUILD direc-
tory. This portion of the . spec file is where it is also common to apply source code patches, or other
activities to massage the source code or contents of the BUILD directory.

For our RPM build, we will not need to make any changes to the default $prep step.

%BUILD

gbuild is the portion of the . spec file that actually compiles the binaries that will later be pulled into our
RPM contents. The default template . spec file has two commands in the $build portion, $configure
and a make command. %configure is a macro that will run a configure script if one exists in the [now]
unarchived source directory. If your source code does not have a configure script, you'll want to remove
this macro call. The other command in $build provided by the template .spec is a make command. This
will run the default target in your {m,M}akefile and provide any options indicated in the % {?
_smp_mflags} macro. If your software requires more explicit build instructions, this is the section that you
put the commands to compile your software, or organize it for the next step, installation.

We can use the the default $build section for our RPM.

Taste of Training — Building your own RPMs | Scott McBrien 5

%INSTALL

The default $install portion of the template . spec file includes the following:

%install
rm -rf $RPM BUILD ROOT
make install DESTDIR=$RPM BUILD ROOT

The $RPM_BUILD_ROOT variable was set by the BuildRoot setting in the preamble, usually it's a directory
created in /var/tmp. If this directory already exists, we’ll remove it. Then we’ll execute the install target in
our software’s {m,M}akefile. By using the DESTDIR argument to make, we ensure that when the make
install is executed, instead of installing the files on our build machine, they will instead be placed inside
our temporary $RPM_BUILD_ ROOT directory. Later, when we package the files for the RPM's file archive,
we will do it in a change rooted (chroot) environment relative to the $RPM_BUILD_ ROOT. Essentially, what
we are doing in this step is positioning the files inside $SRPM_BUILD_ROOT directory so that later we can
generate a file archive containing the software. When the archive is unpacked, the files will end up in the
correct locations on the target system.

Looking at our software’s make install target, files get placed in /usr/local/bin. This directory
structure does not exist in the $RPM_BUILD_ROOT directory, so before we can run make install, we will
need to generate this directory structure. Additionally, we would like to put the README file included with the
software in the /usr/share/doc/FluffyMcAwesome-1.0 directory, but the make install target does
not handle this file, so we’ll have to place it manually into our archive. Please change the $install target
in your . spec file to read:

%sinstall

rm -rf $RPM BUILD ROOT

mkdir -p $RPM BUILD ROOT/usr/local/bin

mkdir -p $RPM BUILD ROOT/usr/share/doc/FluffyMcAwesome-1.0
make install DESTDIR=$RPM BUILD ROOT

cp README $RPM BUILD ROOT/usr/share/doc/FluffyMcAwesome-1.0

%CLEAN

%clean is executed when the RPM build process has completed. The default is to remove the
$RPM_BUILD_ROOT to make sure that the temporary files we created in /var/tmp are removed from the
system. You could add your own rules here if you needed to clean up other items on the build system that
are byproducts of your compilation of this software.

%FILES

The 2files section of the . spec file is also known as the file manifest. It will contain a list of all the files
and directories that are provided by this RPM. The file manifest will be part of the database record for this
software in the installed RPM database. Additionally, the files here will be checked against existing files on a

Taste of Training — Building your own RPMs | Scott McBrien 6

target machine to ensure that there is not a collision, that is to say, that a new RPM would overwrite a file
that is already on a machine provided by a different RPM.

The $files provided by the . spec template is as follows:

%files
%defattr(-,root, root, -)
%doc

gdefattr is the listing of the default attributes that should be applied to the files included in the manifest,
the expression in parenthesis next to the macro has four fields: (file permissions, user-owner, group-owner,
directory permissions). In the default provided by the template . spec, files would be permissioned with
whatever permissions are on the files when the RPM archive is created from $RPM_BUILD ROOT. The files
will be owned by root and the root group, and directory permissions would be the same as the default direc-
tory permissions used when the directories were added into the RPM file archive.

%doc is a stub to denote that as an RPM packager you can tag that some files are of specific types, such as
documentation files (3doc), configuration files (3config), directories (3dir).

If you do not list the files that are copied into the $RPM_BUILD_ROOT in your file manifest, your RPM build
will fail with an error similar to the following:

RPM build errors:
Installed (but unpackaged) file(s) found:
/usr/local/bin/FluffyMcAwesome
/usr/share/doc/FluffyMcAwesome-1.0/README

Please change the $files section of the . spec file to read as follows:

%files

%sdefattr(-,root, root, -)
/usr/local/bin/FluffyMcAwesome

%sdoc /usr/share/doc/FluffyMcAwesome-1.0/README

To further customize the content of the file manifest, you can use the sattr macro. This tag is applied to
individual files or directories to set permissions or ownerships on an individual file or directory. For example,
if we wanted a file to be owned by the apache user, the web group, and permissioned -rw-rw-r-- the file
manifest listing for our file would look similar to:

%attr(0660,apache,web) /var/www/somefile

SCRIPTS

There are four main types of scripts we can embed in our package for manipulating the target machine,
%pre, ¥post, ¥preun, $postun. $pre Script contents are executed on the target machine before our soft-
ware is unpackaged and installed. 2post is executed after the software has been unpackaged and

Taste of Training — Building your own RPMs | Scott McBrien 7

installed. %preun happens before an RPM erasure, before the software is uninstalled. %postun executes

after the software has been removed from the target machine. Here are some examples of scripts from the
httpd RPM (rpm -gq —scripts httpd).

spre
Add the "apache" user
getent group apache >/dev/null || groupadd -g 48 -r apache
getent passwd apache >/dev/null || \
useradd -r -u 48 -g apache -s /sbin/nologin \
-d /var/www -c "Apache" apache
exit 0

Before the RPM is installed, using getent, the RPM checks for the existence of the apache user and
group. If either is missing, it calls the appropriate command to add the respective user or group.

%post
Register the httpd service
/sbin/chkconfig --add httpd

After the software has been installed, the init scripts for httpd are added to various runlevels by chkcon-
fig.

%preun
/sbin/service httpd stop > /dev/null 2>&1
/sbin/chkconfig --del httpd

Before the software is removed from the machine, any running instances of httpd should be stopped.
Then chkconfig is called to remove the httpd init script links from the rc directories.

We don't need any additional scripting added to our . spec to handle the machine state for our simple
FluffyMcAwesome software.

%CHANGELOG

%changelog is a section of the . spec where we can add comments denoting what has changed in the
RPM or the software packaged by this RPM. This is especially important in development environments, like
Red Hat Enterprise Linux, where the OSS version doesn’t change, but the package has backported fixes or
modifications made to it by the package maintainer. Red Hat provided package $changelog entries will
often mention a bugzilla ID number or CVE number associated with the fixes being imported in the package.
Here are a couple of change log entries for reference:

Taken from httpd package (rpm -g —changelog httpd)

* Thu Oct 06 2011 Joe Orton <jorton@redhat.com> - 2.2.15-15
- core: add security fix for CVE-2011-3368 (#743659)

Taste of Training — Building your own RPMs | Scott McBrien 8

Q.

Taken from the kernel (rpm -q —changelog kernel):

* Tue Nov 08 2011 Aristeu Rozanski <arozansk@redhat.com> [2.6.32-219.el6]

- [kernel] KEYS: Fix a NULL pointer deref in the user-defined key type (David
Howells) [751190] {CVE-2011-4110}

- [scsi] fc class: fix building of Fibre Channel DUP drivers in 6.2 (Mike
Christie) [750268]

Natice that the $changelog information is slightly different between the two examples, however both of

them start with a format of:
* WEEKDAY MONTH MONTHDAY YEAR MAINTAINERNAME <MAINTAINER EMAIL>

- DETAILS OF CHANGE

Add a 3changelog entry to your . spec file for FluffyMcAwesome. Please change the $changelog sec-
tion to read:

%changelog
* Thu Jun 28 2012 YOUR NAME <YOUR E-MAIL> - 1.0-1
- Initial build of FluffyMcAwesome 1.0 from source archive

RPMBUILD

Now that our . spec file is complete, it is time to build the RPM package for our software. To perform the
compilation, we use the rpmbuild command, installed earlier from the rpm-build RPM. rpmbuild can
be used in several ways, but we are going to use it to build the binary based RPM packages that will provide
the FluffyMcAwesome software. If your . spec file has all the required items and is syntactically accurate,
you should be able to build the FluffyMcAwesome-1.0-1.x86_64.rpm package by running:

cd ~/rpmbuild/SPECS; rpmbuild -bb FluffyMcAwesome.spec

You should see all the output from the configure script, the software compilation, and the package instal-
lation scroll by. If your . spec file has problems, the rpmbuild will likely halt with errors indicating where or
what the problem is. If all went well, your package will be compiled and placed in
~/rpmbuild/RPMS/x86_64/.

INSTALLATION

To install your brand new RPM, as root:

yum localinstall /home/student/rpmbuild/RPMS/x86 64/FluffyMcAwesome-1.0-
1.x86 _64.rpm

You should now be able to run the FluffyMcAwesome executable and enjoy playing a Space Invaders like
game!

Taste of Training — Building your own RPMs | Scott McBrien 9

COMPLETED FLUFFYMCAWESOME.SPEC FILE

Name: FluffyMcAwesome

Version: 1.0

Release: %{?dist}

Summary : This is both Fluffy and McAwesome

Group: Amusements/Games

License: Copyright Red Hat, Inc. 2012

URL: http://www.sourceforge.net/FluffyMcAwesome

Source0: FluffyMcAwesome-1.0.tar.gz

BuildRoot: %(mktemp -ud %{ tmppath}/%{name}-%{version}-%{release}-
XXXXXX)

BuildRequires: ncurses-devel gcc
Requires: /bin/bash ncurses

%sdescription
FluffyMcAwesome is software that is both Fluffy and McAwesome. Who doesn't
want Fluffy or McAwesome software?!? Now you have both, congratulations.

sprep
%ssetup -q
%build
%sconfigure

make %{? smp mflags}

%sinstall

rm -rf $RPM BUILD ROOT

mkdir -p $RPM BUILD ROOT/usr/local/bin

mkdir -p $RPM_BUILD_ROOT/usr/share/doc/FluffyMcAwesome-1.0
make install DESTDIR=$RPM BUILD ROOT

cp README $RPM BUILD ROOT/usr/share/doc/FluffyMcAwesome-1.0

%clean
rm -rf $RPM BUILD ROOT

%files
%defattr(-,root, root, -)

Taste of Training — Building your own RPMs | Scott McBrien 10

/usr/local/bin/FluffyMcAwesome
%doc /usr/share/doc/FluffyMcAwesome-1.0/README

%schangelog
* Thu Jun 28 2012 YOUR NAME <YOUR E-MAIL> - 1.0-1
- Initial build of FluffyMcAwesome 1.0 from source archive

REFERENCES:

rpmbuild(8), rpmlint(1l),
Fedora Packaging Guidelines:
(http://fedoraproject.org/wiki/Packaging:Guidelines)

Taste of Training — Building your own RPMs | Scott McBrien 11

