

Introduction

How the audit system works
How we can layer an IDS/IPS system on top of it

Introduction

Designed to meet or exceed:
CAPP, LSPP, RBAC, NISPOM, FISMA, PCI, DCID 6/3
Evaluated by NIAP
Certified to CAPP/EAL4+ on RHEL4
Under evaluation for LSPP/CAPP/RBAC/EAL4+ RHELS

Introduction

Some of the requirements for the audit system:

Shall be able to record at least the following
Date and time of event, type of event, subject identity, outcome
Sensitivity labels of subjects and objects
Be able to associate event with identity of user causing it
All modifications to audit configuration and attempted access to
logs
All use of authentication mechanisms
Changes to any trusted database
Attempts to import/export information

Be able to include/exclude events based on user identity,
subject/object labels, other attributes

Kernel

Designed to minimize the performance impact as little as possible

Relies on a flag, TIF_SYSCALL_AUDIT, which is part of the thread’s
information flags variable.

Flag is inheritted at fork when audit_enabled is true
Flag is reset by “never” audit rule directive

If you need audit of all processes, you must use audit=1 as a boot
parameter.

Kernel — audit flag inheritance

audit_enabled

Audit state == ALWAYS

Create context
Set thread flag

Kernel — syscall entry

TIF_SYSCALL_AUDIT

current->audit_context

audit_enabled

Collect audit info

Kernel

Need to decide if the sycall excursion is of interest
Audit context has a state variable: NEVER and ALWAYS
Filters

Entry

Exit

Task

User

Exclude

errere
¥
.
.
.
:
3
4
.
- L]
H T
. i
Entry = ; ", Task
5 § Fyw et -,
- - .
.- i il_
A . .
pp [- %
rrrr ----l-----‘_-" fammmnnmn
- - h
[L} ' H
- - =
] syscall magic 2
" i) [- .+‘:
e v | - a m
wn T . A
CRE) oty 5 R
+, ~ - - o H
L » S Al =
----- L) 13 = 4" H
-------- “;..: BTETETL e, yesssgkEsssmmEms
L] - - +
o - - F L
- o e e
""r -+ "'-|- RRCLF S, b - a-‘.
+, +_ - -
L. +, '+. a1
= b . "
. I11 -|- 'I-.I .I.
Exit * LA -
+ + r +
* 1 = -
'-_ = E
4 Ty -
. .
+ L]
1+‘. 4
L] L]
Y -
Exclude

RED HAT :: SAN DIEGO == 2007

SUMMIT
Audit Daemon ‘

Kernel

Syscall Exit
If context marked auditable emit event
Event can be multi-part

Ex. Message Queue attributes, IPC attributes, execve args,
socket addr, socket call args, file paths, and current working
directory.

All are tied together with time stamp and serial number
Free allocated resources

Audit Event

type=SYSCALL msg=audit(1178552800.984:490): arch=40000003
syscall=10 success=yes exit=0 a0=8ca5460 a1=16 a2=5 a3=8ca547/d
items=2 ppid=749 pid=3783 auid=4325 uid=0 gid=0 euid=0 suid=0 fsuid=0
egid=0 sgid=0 fsgid=0 tty=pts2 comm="vim" exe="/usr/bin/vim"
subj=user_u:system_r:unconfined t:sOkey="LOG_audit"

type=CWD msg=audit(1178552800.984:490): cwd="/root"

type=PATH msg=audit(1178552800.984:490): item=1
name="/var/log/audit/.audit.log.swp" inode=295008 dev=08:05
mode=0100600 ouid=0 ogid=0 rdev=00:00
obj=user_u:object_r:auditd_log t:sO

User Space Controls

Audit rules are stored at /etc/audit/audit.rules

Audit rules are loaded by auditctl

Auditctl can control the kernel settings:
-e 0/1/2 disable/enable/enabled and immutable
-f 0/1/2 failure mode silent/printk/panic
-b 256 backlog

-r0 event rate limit
-S get status
-] list all rules

-D delete all rules

Syscall Rules

Follows the general form:
-a filter,action -S syscall -F field=value

Example to see failed opens for user 500:
-a exit,always -S open -F success!=0 -F auid=500

-F can be one of: a0, a1, a2, a3, arch, auid, devmajor, devminor, user/group
Ids, inode, msgtype, object/subject context parts, pid, ppid, or success.

“and” created by adding more “-F” name/value pairs. An “or” is created by
adding a new rule.

Results are evaluated by the filter to decide if event is auditable

Kernel — File access auditing

Syscall auditing presents us with a problem when we need to monitor
files

Audit system does collect devmajor/minor information and inode

But many interesting files are edited as temp copy and then replace
original file

This causes the inode to change

Kernel — File System Auditing

Audit rules specified as a path and permision
Kernel translates into inode rule
When something replaces a watched file, inode rule updated in kernel
Reconciliation is done by syscall exit filter
Limitations:
No wildcards or recursive auditing
If rule specifies directory, audits changes to dir entries

File System audit rules

File system audit rules take the general form of:
-w /full/path-to-file -p wrxa -k “rule note”

Can also be expressed as syscall audit rule:
-a exit,always -F path=/full/path-to-file -F perm=wrxa -k “rule note”

The perm field selects the syscalls that are involved in file writing, reading,
execution, or attribute change.

Audit Daemon

Audit daemon'’s job is to simply dequeue events from netlink interface as
fast and possible and log them to disk

It does no translation or changing of audit data

It monitors disk usage for partition where logs are located

When short on disk space, it can respond in one of several ways
ignore, syslog, email, execute program, suspend, single, or halt

The audit daemon handles its own log rotation since it must always be
running or events get dumped to syslog

Ausearch

The ausearch program is the preferred way to look at audit logs
Can do simple queries

Correlates the individual records to 1 event

Can interpret fields from numeric data to human readable form
Can be used to extract events from audit logs

Ausearch Examples

Searching for bad logins:

ausearch -m USER_AUTH,USER_ACCT --success no
Searching for events on shadow file today

ausearch -f shadow --start today
Searching for failed access user acct 500

ausearch -m PATH --success no --syscall open --loginuid 500
Extracting logs for 2 days

ausearch --start yesterday --raw > new.log

Audit Event Type Classes

1000 - 1099 are for commanding the audit system

1100 - 1199 user space trusted application messages

1200 - 1299 messages internal to the audit daemon

1300 - 1399 audit event messages

1400 - 1499 kernel SE Linux use

1600 - 1699 kernel crypto events

1700 - 1799 kernel anomaly records

1800 - 1999 future kernel use (maybe integrity labels and related events)
2001 - 2099 unused (kernel)

2100 - 2199 user space anomaly records

2200 - 2299 user space actions taken in response to anomalies

2300 - 2399 user space generated LSPP events

2400 - 2499 user space crypto events SUNMIT
2500 - 2999 future user space (maybe integrity labels and related events)

HAT :: SAN DIEGO :: 2007

Audit Event Record Types

ADD_GROUP
ADD_USER
ANOM_ACCESS_FS
ANOM_ADD_ACCT
ANOM_AMTU_FAIL
ANOM_CRYPTO_FAIL
ANOM_DEL_ACCT
ANOM_EXEC
ANOM_LOGIN_ACCT
ANOM_LOGIN_FAILURES
ANOM_LOGIN_LOCATION
ANOM_LOGIN_SESSIONS
ANOM_LOGIN_TIME
ANOM_MAX_DAC
ANOM_MAX_MAC
ANOM_MK_EXEC
ANOM_MOD_ACCT
ANOM_PROMISCUOUS
ANOM_RBAC_FAIL
ANOM_RBAC_INTEGRITY_FAIL
ANOM_SEGFAULT

AVC

AVC_PATH

CHGRP_ID
CONFIG_CHANGE
CRED_ACQ

CRED_DISP
CRED_REFR

CWD

DAC_CHECK
DAEMON_ABORT
DAEMON_CONFIG
DAEMON_END
DAEMON_ROTATE
DAEMON_START
DEL_GROUP
DEL_USER

EXECVE

FD_PAIR
FS_RELABEL

IPC

IPC_SET_PERM
KERNEL
KERNEL_OTHER
LABEL_LEVEL_CHANGE
LABEL_OVERRIDE
LOGIN
MAC_CIPSOV4_ADD
MAC_CIPSOV4_ DEL
MAC_CONFIG_CHANGE
MAC_IPSEC_ADDSA
MAC_IPSEC_ADDSPD
MAC_IPSEC_DELSA
MAC_IPSEC_DELSPD
MAC_MAP_ADD
MAC_MAP_DEL
MAC_POLICY_LOAD
MAC_STATUS

MQ_GETSETATTR
MQ_NOTIFY
MQ_OPEN
MQ_SENDRECV
OBJ_PID

PATH

RESP_ACCT _LOCK
RESP_ACCT LOCK_TIMED
RESP_ACCT _REMOTE
RESP_ACCT_UNLOCK_TIMED
RESP_ALERT
RESP_ANOMALY
RESP_EXEC
RESP_HALT
RESP_KILL_PROC
RESP_SEBOOL
RESP_SINGLE
RESP_TERM_ACCESS
RESP_TERM_LOCK
ROLE_ASSIGN
ROLE_REMOVE
SELINUX_ERR

SOCKADDR

TEST

TRUSTED_APP

USER

USER_ACCT
USER_AUTH

USER_AVC
USER_CHAUTHTOK
USER_CMD

USER_END

USER_ERR
USER_LABELED_EXPORT
USER_LOGIN
USER_LOGOUT
USER_MGMT
USER_ROLE_CHANGE
USER_SELINUX_ERR
USER_START
USER_UNLABELED EXPORT
USYS_CONFIG

RED HAT :: SAN DIEGO = 2007

Aureport

Utility that provides columnar reports on audit data
Intended to be used for scripting more interesting reports from raw data
Gives a summary report about what's been happening on your machine

Each item in summary report leads to a report on that topic where
summary or columnar data is given.

Can read from stdin so that ausearch can pipe data to it

Aureport system summary

Summary Report

Range of time in logs: 07/22/2006 08:29:01.394 - 05/07/2007 16:12:29.832
Selected time for report: 05/01/2007 00:00:01 - 05/07/2007 16:12:29.832
Number of changes in configuration: 85

Number of changes to accounts, groups, or roles: 2

Number of logins: 25

Number of failed logins: 1

Number of authentications: 29

Number of failed authentications: 1

Number of users: 2

Number of terminals: 11

Number of host names: 3

Number of executables: 59

Number of files: 3

Number of AVC denials: 46

Number of MAC events: 21

Number of failed syscalls: 16

Number of anomaly events: 33 e n as 2 &
Number of responses to anomaly events: 0 S U m IT
Number of crypto events: 0 ¢
Number of process IDs: 4087
Number of events: 5885

Aureport failed system summary

Failed Summary Report

Range of time in logs: 07/22/2006 08:29:01.394 - 05/07/2007 16:12:29.832
Selected time for report: 05/01/2007 00:00:01 - 05/07/2007 16:12:29.832
Number of changes in configuration: 0

Number of changes to accounts, groups, or roles: 2

Number of logins: 0

Number of failed logins: 1

Number of authentications: 0

Number of failed authentications: 1

Number of users: 1

Number of terminals: 3

Number of host names: 1

Number of executables: 6

Number of files: 2

Number of AVC denials: 46

Number of MAC events: 0

Number of failed syscalls: 16

Number of anomaly events: 0 e n as 2 &
Number of responses to anomaly events: 0

SUMIT
Number of crypto events: 0 - €

Number of process IDs: 15 "\ - ‘
Number of events: 54 ? /
')

D)

l ,—

Audit Event Dispatcher

There was a desire to create a system where plugins that do different
tasks could have access to audit data.

Audit daemon must be very simple so that its code can be reviewed and
fully understood so that it can pass at EAL4+.

The audit daemon must not be vulnerable to attack by other processes
Audit daemon has special SE Linux permissions
This makes it not a good candidate for plugins

Audit Event Dispatcher Data Flow

Kernel

-

Audit Daemon

Setroubleshoot

Remote Logging

Event Dispatcher

IDS/IPS

|

Audit Event Dispatcher Plugins

Programming rules
Must read from stdin
Must obey signals such as SIGHUP, SIGTERM
Must read config information from file
Types of plugins
Input
Syslog, iptables events
Output
Remote logging, af_unix, protocol converters
Local
Event filter, setroubleshooter

Audit Parsing Library

Design goals
Completely hide the log file format so that it can be changed over time
Abstract all internal data structures to make friendly to other languages
Create iterator approach like database libraries
Search API so that only records of interest can be found
Ability to translate from numeric values to human readable

A SAN DIEGO :: 2007

"sumn

Audit Parsing Library Example - C

auparse_state t *au = auparse_init(AUSOURCE_FILE, "./test.log");
do {
do {
do {
printf("%s=%s (%s)\n", auparse_get_field_name(au),
auparse_get field_str(au), auparse_interpret_field(au));
} while (auparse_next_field(au) > 0);
} while(auparse_next_record(au) > 0);
} while (auparse_next_event(au) > 0);

Audit Parsing Library Example - Python

au = auparse.AuParser(auparse. AUSOURCE_FILE, "./test.log");
while True:
while True:
while True:
print "%s=%s (%s)" % (au.get_field_name(), au.get_field_str(), au.interpret_field())
if not au.next_field(): break
if not au.next_record(): break

if not au.parse_next_event(): break

A SAN DIEGO :: 2007

"sumn

Requirements for IDS/IPS

The tools shall build upon audit reduction and analysis tools to aid the ISSO or
ISSM in the monitoring and detection of suspicious, intrusive, or attack-like
behavior patterns.

The capability of the system to monitor occurrences of, or accumulation of,
auditable events that may indicate an imminent violation of security policies.

The capability of the system to notify the ISSO of suspicious events and taking
the least-disruptive action to terminate the suspicious events.

In real time

HAT :: SAN DIEGO :: 2007

SUM“IIT

Audit Event Feeds

Kernel
Trusted Programs
Pam
Login, sshd, gdm
Shadow-utils, passwd
Semanage
MAC selinux-policy
Test Apps
Amtu
Rbac selftest
Aide
(Security Scaning Tool)

Attacks

Gain Entry to system
Login / exploit
Normal user
Access files or resources
Become root
Change trusted database
Add or modify account and passwords
Install programs
Start / stop services
Watch other users
Kill audit system
Snlff trafﬁC RED HAT :: SAN DIEGO :: 2007
Gain entry to other systems

IDS/IPS System

Kernel

A

Audit

Audispd

i

Detect

React

Attacks — anomaly record types

Gain Entry to system
Login / exploit

AUDIT_ANOM_LOGIN_FAILURES - Failed login limit reached
AUDIT_ANOM_LOGIN_TIME - Login attempted at bad time
AUDIT_ANOM_LOGIN_SESSIONS - Max concurrent sessions reached
AUDIT_ANOM_LOGIN_ACCT - Login attempted to watched acct
AUDIT_ANOM_LOGIN_LOCATION - Login from forbidden location
AUDIT_ANOM_ABEND - Process ended abnormally
AUDIT _ANOM_MAX MAC - Max MAC failures reached

Attacks — anomaly record types

Access files or resources
AUDIT _ANOM_ MAX DAC - Max DAC failures reached
AUDIT _ANOM_MAX MAC - Max MAC failures reached
AUDIT _ANOM_ ACCESS FS - Access of file or dir
AUDIT_ANOM_EXEC - Execution of program

Become root
AUDIT_ANOM_ROOT_TRANS

Change trusted database
AUDIT_ANOM_ACCESS FS - Access of file or dir
AUDIT_ANOM_AMTU_FAIL - AMTU failure
AUDIT_ANOM_RBAC_FAIL - RBAC self test failure
AUDIT_ANOM_RBAC_INTEGRITY_FAIL - RBAC file integrity

Attacks — anomaly record types

Add or modify account and passwords
AUDIT_ANOM_ADD_ACCT - Adding an acct
AUDIT_ANOM_ DEL_ACCT - Deleting an acct
AUDIT_ANOM_MOD_ACCT - Changing an acct

Install programs
AUDIT _ANOM_ MK EXEC - Make an executable

Start / stop services
AUDIT_ANOM_EXEC - Execution of file

Watch other users
AUDIT _ANOM_ ACCESS FS - Access of file or dir
AUDIT _ANOM_ MK EXEC - Make an executable

Attacks — anomaly record types

Kill audit system

AUDIT_ANOM_RBAC_FAIL - RBAC self test failure
Sniff traffic

AUDIT_ANOM_PROMISCUOUS - Device changed promiscuous mode
Gain entry to other systems

We would have to correlate logging from all machines

Attack reaction types

AUDIT_RESP_ANOMALY - Anomaly not reacted to

AUDIT _RESP_ALERT - Alert email was sent
AUDIT_RESP_KILL PROC - Kill program

AUDIT RESP TERM_ACCESS - Terminate session

AUDIT RESP _ACCT _REMOTE - Acct locked from remote access
AUDIT _RESP_ACCT LOCK TIMED - User acct locked for time

AUDIT _RESP_ACCT _UNLOCK TIMED - User acct unlocked from time
AUDIT RESP _ACCT LOCK - User acct was locked

AUDIT _RESP_TERM LOCK - Terminal was locked

AUDIT RESP_SEBOOL - Set an SE Linux boolean

AUDIT_RESP_EXEC - Execute a script WAT - SAN D1£60 = 2007
SU NMIT

AUDIT_RESP_SINGLE - Go to single user mode
AUDIT_RESP_HALT - take the system down

Configuring the IDS/IPS system

Failed login limit reached

AUDIT_ANOM_LOGIN_FAILURE_ENABLE = true
AUDIT_ANOM_LOGIN_FAILURE_LIMIT = 5
AUDIT_ANOM_LOGIN_FAILURE_INTERVAL = 10
AUDIT_ANOM_LOGIN_FAILURE_RESPONSE = AUDIT_RESP_ANOMALY

Login attempted to watched acct

AUDIT_ANOM_LOGIN_ACCT = true
AUDIT_ANOM_LOGIN_ACCT_USER = root ftp daemon
AUDIT_ANOM_LOGIN_ACCT_RESPONSE = AUDIT_RESP_ANOMALY

RED HAT :: SAN DIEGO = 2007

SUMIT

| l/

\z

Configuring the IDS/IPS system

Access of file or dir

AUDIT _ANOM_ACCESS_FS = true
AUDIT_ANOM_ACCESS_FS_FILES = /etc/passwd /var/log/*
AUDIT_ANOM_ACCESS_FS_EXCEPTION_USERS = root sgrubb
AUDIT _ANOM_ACCESS_FS_EXCEPTION_GROUPS = wheel root
AUDIT _ANOM_ACCESS_FS RESPONSE = AUDIT RESP_ ANOMALY

Execution of file

AUDIT _ANOM_EXEC = true

AUDIT ANOM_EXEC_BINARIES = /usr/bin/sudo /bin/su /bin/nc
AUDIT_ANOM_EXEC_EXCEPTION_USERS = root sgrubb
AUDIT _ANOM_EXEC_EXCEPTION_GROUPS = wheel root
AUDIT _ANOM_EXEC_RESPONSE = AUDIT RESP_ ANOMALY

Make an executable

AUDIT_ANOM_MK_EXEC = true
AUDIT_ANOM_MK_EXEC_EXCEPTION_USERS = root sgrubb SUMIT
AUDIT_ANOM_MK_EXEC_EXCEPTION_GROUPS = root wheel -
AUDIT_ANOM_MK_EXEC_RESPONSE = AUDIT_RESP_ANOMALY N\ =
=9

Configuring Reactions

Still under design
Will have several little programs to perform each response

Will pass command line variables such as pid, user, group, anomaly type, tty, or
host name

Questions?

Email: sgrubb@redhat.com
Web page: http://people.redhat.com/sgrubb/audit

Mail list: linux-audit@redhat.com

mailto:sgrubb@redhat.com
http://people.redhat.com/sgrubb/audit
mailto:linux-audit@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

