

RED HAT OPENSTACK DEEP DIVE

OPEN CLOUD INFRASTRUCTURE BUILT ON RED HAT TECHNOLOGIES

Steven Ellis Solution Architect – Red Hat NZ August 2013

AGENDA

- What is OpenStack
- Cloud Workloads
- What is Red Hat OpenStack?
- Some OpenStack History
- OpenStack Components
- Red Hat in the OpenStack community and upstream
- RDO: Community OpenStack from Red Hat
- OpenStack Upstream vs Red Hat OpenStack releases
- What's next in OpenStack and Red Hat OpenStack
- Questions

There will be Demo

Compute, Networking, Storage

Image credit: http://www.openstack.org/software

Public or Private Cloud

Self Service

Pay as you go

Illusion of Infinite Capacity

Massive Scale

Cloud Ready Workloads?

TRADITIONAL WORKLOADS

- Stateful VMs: Application defined in VM
- Application SLA = SLA of VM
- SLA requires enterprise virtualization features to keep VMs highly available
- VMs scale up: add vCPU, vRAM, etc.
- Lifecycle may be measured in years
- Applications not designed to tolerate failure of VMs

TRADITIONAL WORKLOADS

- Stateful VMs: Application defined in VM
- Application SLA = SLA of VM
- SLA requires enterprise virtualization features to keep VMs highly available
- VMs scale up: add vCPU, vRAM, etc.
- Lifecycle may be measured in years
- Applications not designed to tolerate failure of VMs

- Stateless VMs : Application distributed
- Application SLA not dependent on any one VM
- SLA requires ability to create and destroy VMs when needed
- Applications scale out: add more Vms
- Lifecycle measured in hours to months
- Applications designed to tolerate failure of VMs

TRADITIONAL WORKLOADS

- Pets are unique, lovingly hand raised and cared for
- They are given names
- When they get ill you nurse them back to health

- Cattle are almost identical to each other
- They are given numbers
- When they get ill you get another one

TRADITIONAL WORKLOADS

- Stateful VMs: Application defined in VM
- Application SLA = SLA of VM
- SLA requires enterprise virtualization features to keep VMs highly available
- VMs scale up: add vCPU, vRAM, etc.
- Lifecycle may be measured in years
- Applications not designed to tolerate failure of VMs

- Stateless VMs : Application distributed
- Application SLA not dependent on any one VM
- SLA requires ability to create and destroy VMs when needed
- Applications scale out: add more Vms
- Lifecycle measured in hours to months
- Applications designed to tolerate failure of VMs

TRADITIONAL WORKLOADS

- Stateful VMs: Application defined in VM
- Application SLA = SLA of VM
- SLA requires enterprise virtualization features to keep VMs highly available
- VMs scale up: add vCPU, vRAM, etc.
- Lifecycle may be measured in years
- Applications not designed to tolerate failure of VMs

- Stateless VMs : Application distributed
- Application SLA not dependent on any one VM
- SLA requires ability to create and destroy VMs when needed
- Applications scale out: add more Vms
- Lifecycle measured in hours to months
- Applications designed to tolerate failure of VMs

EVOLVING IT ARCHITECTURES

RED HAT'
ENTERPRISE
VIRTUALIZATION

Datacenter Virtualization

Private laaS / Private Cloud

Hybrid laaS / Hybrid Cloud

- Stateful VMs: Application defined in VM
- Application SLA = SLA of VM
- SLA requires enterprise virtualization features to keep VMs highly available
- VMs scale up: add vCPU, vRAM, etc.
- · Lifecycle may be measured in years
- Applications not designed to tolerate failure of VMs

- Stateless VMs: Application distributed
- Application SLA not dependent on any one VM
- SLA requires ability to create and destroy VMs when needed
- Applications scale out: add more Vms
- Lifecycle measured in hours to months
- Applications designed to tolerate failure of VMs

Are You Cloud Ready?

OPENSTACK RUNS ON LINUX

- Modular architecture
- Designed to easily scale out
- Based on (growing) set of core services

RED HAT ENTERPRISE LINUX OPENSTACK PLATFORM

CLOUD INFRASTRUCTURE FOR CLOUD-ENABLED WORKLOADS

- Modular architecture
- Designed to easily scale out
- Based on (growing) set of core services

RED HAT ENTERPRISE LINUX

Demo Environment

- RHEL 6.4 + RHOS 3.0 (Grizzly)
- All In One profile using Packstack
- Hosted on dedicated hardware
 - Nova requires HW Virtualisation for Performance
- RHEL 6.4 pre-installed (kickstart)
 - Packages pre-cached to reduce install time

OpenStack History and Cadence

OpenStack Trends, Growth & Milestones

#1 OVERALL CODE **CONTRIBUTOR TO** GRIZZLY (Apr 2013)

WHY ARE WE INVOLVED WITH OPENSTACK?

- Red Hat Enterprise Linux OpenStack Platform will be to OpenStack what Red Hat Enterprise Linux is to Linux
- We bring what OpenStack needs
 - Supportability
 - Stability
 - Enterprise grade features (Security, Performance, RAS)
 - Certified ecosystem
 - Lifecycle

OpenStack Components

OPENSTACK ARCHITECTURE

OST 0001

- Modular architecture
- Designed to easily scale out
- Based on (growing) set of core services

OPENSTACK CORE PROJECTS

OpenStack Identity (KEYSTONE)

- Identity Service
- Common authorization framework
- Manages users, tenants and roles
- Pluggable backends (SQL, PAM, LDAP, etc)

OpenStack Identity (Keystone)

OpenStack Identity (Keystone) Scaling

OPENSTACK CORE PROJECTS

OpenStack Compute (NOVA)

- Core compute service comprised of
 - Compute Nodes hypervisors that run virtual machines
 - Supports multiple hypervisors KVM, Xen, LXC, Hyper-V and ESX
 - Distributed controllers that handle scheduling, API calls, etc
 - Native OpenStack API and Amazon EC2 compatible API

OpenStack Compute (Nova)

OpenStack Compute (Nova) Scaling

OpenStack Image Service (GLANCE)

- Image service
- Stores and retrieves disk images (virtual machine templates)
- Supports Raw, QCOW, VMDK, VHD, ISO, OVF & AMI/AKI
- Backend storage: Filesystem, Swift, Amazon S3

OpenStack Image Service (Glance)

OpenStack Object Storage (SWIFT)

- Object Storage service
- Modeled after Amazon's S3 service
- Provides simple service for storing and retrieving arbitrary data
- Native API and S3 compatible API

OST 0001

OpenStack Networking (NEUTRON formerly QUANTUM)

- Network Service
- Provides framework for Software Defined Network (SDN)
- Plugin architecture
 - Allows integration of hardware and software based network solutions

OpenStack Block Storage (CINDER)

- Block Storage (Volume) Service
- Provides block storage for virtual machines (persistent disks)
- Similar to Amazon EBS service
- Plugin architecture for vendor extensions

eg. NetApp driver for Cinder

OpenStack Dashboard (HORIZON)

- Dashboard
- Provides simple self service UI for end-users
- Basic cloud administrator functions
 - Define users, tenants and quotas
 - No infrastructure management

OPENSTACK INCUBATING PROJECTS

OpenStack Orchestration (HEAT)

- Provides template driven cloud application orchestration
- Modeled after AWS CloudFormation
- Targeted to provide advanced functionality such as high availability and autoscaling
- Introduced by redhat.

Graduated from Incubation to Integrated status for the Havana release

OPENSTACK INCUBATING PROJECTS

OpenStack Monitoring and Metering (CEILOMETER)

- Goal: To provide a single infrastructure to collect measurements from an entire OpenStack infrastructure; eliminate need for multiple agents attaching to multiple OpenStack projects
- Primary targets metering and monitoring; provides extensibility

Graduated from Incubation to Integrated status for the Havana release

CEILOMETER

METERING AND MONITORING

OpenStack Metering (Ceilometer)

Credit: Doug Hellman

http://stevedore.readthedocs.org/en/latest/essays/pycon2013.html#requirements-for-ceilometer

HOW DO WE GET FROM COMMUNITY OPENSTACK TO RED HAT OPENSTACK?

RED HAT LEADS THROUGH OPEN INNOVATION

OPENSTACK PROGRESSION

- Open source, communitydeveloped (upstream) software
- Founded by Rackspace Hosting and NASA
- Managed by the OpenStack Foundation
- Vibrant group of developers collaborating on open source cloud infrastructure
- Software distributed under the Apache 2.0 license
- No certifications, no support

- Latest OpenStack software, packaged in a managed open source community
- Facilitated by Red Hat
- Aimed at architects and developers who want to create, test, collaborate
- Freely available, not for sale
- Six-month release cadence mirroring community
- No certification, no support
- Installs on Red Hat and derivatives

RED HAT' ENTERPRISE LINUX' OPENSTACK' PLATFORM

- Enterprise-hardened OpenStack software
- Delivered with an enterprise life cycle
- Six-month release cadence offset from community releases to allow testing
- Aimed at long-term production deployments
- Certified hardware and software through the Red Hat OpenStack Cloud Infrastructure Partner Network
- Supported by Red Hat

OPENSTACK RELEASE CADENCE

Upstream

- Source code Only
- Releases every 6 month
- 2 to 3 'snapshots' including bug fixes
- No more fixes/snapshots after next release

RDO

- Follows upstream cadence
- Delivers binaries

OPENSTACK RELEASE CADENCE

OPENSTACK RELEASE CADENCE

- Red Hat Enterprise Linux OpenStack Platform
 - 6 Month cadence
 - Roughly 2 months AFTER upstream
 - Time to stabilize, certify, backport etc.
 - Initially 1 year lifecycle
 - e.g., Support for Folsom ends after Havana release
 - Support for Grizzly ends after "I" release
 - Will increase lifecycle over time
 - Based on upstream stability and resources

RED HAT ENTERPRISE LINUX OPENSTACK PLATFORM VALUE

- Enterprise grade OpenStack deployment with ecosystem, lifecycle, support that customers expect from Red Hat
 - Based on RHEL and includes required fixes in both OpenStack and RHEL
 - Enterprise hardened OpenStack code
 - Longer supported lifecycle
 - includes bug fixes, security errata, selected backports
 - Certified ecosystem (Red Hat Certified OpenStack Partner program and Red Hat Enterprise Linux ecosystem)
 - Full support and Certifications for RHEL and Windows workloads

OPENSTACK: WHAT'S NEXT?

Common customer concerns:

- No centralized management or installer
- Limited storage options
 - No fiber channel support, no storage migration, backup, DR,etc
- No (or limited) Live Migration
- No workload management (DRS)
- No High Availability
- No monitoring
- Upgrading
- No reporting
- Limited configuration options
- Performance concerns

Q: WHO WILL
BE THE RED HAT
OF OPENSTACK?

A: RED HAT WILL

TRADEMARK STATEMENTS

Copyright © 2013 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, and RHCE are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

The OpenStack™ Word Mark and OpenStack Logo are either registered trademarks / service marks or trademarks / service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation or the OpenStack community.

