

Resource Management with CGroups

Steven Ellis
Solution Architect
Red Hat New Zealand
sellis@redhat.com

CGroups

- What
 - are CGroups
- Why
 - do I need CGroups
- How
 - do I use CGroups

What are CGroups

- In Kernel capability to limit, account and isolate resources
 - CPU
 - Memory
 - Disk I/O
- Originally developed by Rohit Seth in 2006 under the name "Process Containers"
- Kernel merge in 2.6.24, now included in most major distributions

CGroup Controllers

- memory: Memory controller
 - Allows for setting limits on RAM and swap usage and querying cumulative usage of all processes in the group
- cpuset: CPU set controller
 - Binding of processes within a group to a set of CPUs and controlling migration between CPus
- cpuacct: CPU accounting controller
 - Information about CPU usage for a group of processes
- cpu: CPU schedular controller
 - Controlling the priorization of processes in the group. Think of it as a more advanced nice level
- devices: Devices controller
 - Access control lists on character and block devices

CGroup Controllers

- blkio: I/O controller for block devices
 - Sets limits on input/output access to and from block devices such as physical drives (disk, solid state, USB, etc.).
- freezer:
 - Suspend or resumes tasks
- net_cls: Network Class controller
 - Tags network packets so the Linux traffic controller can identify packets with a particular CGroup

Why

SLA Management

 Meet application SLAs by reducing resource contention and increasing predictability in performance.

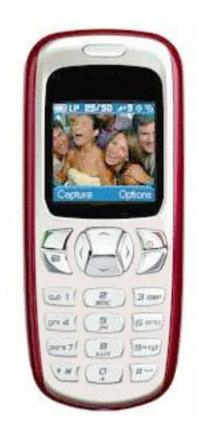
Large Virtual Consolidation

 Prevent single or group of virtual machines monopolising resources., or impacting other environments.

Cost based accounting

Cost recovery from business units

When


When did I first need CGroups?

Even I was surprised

2009/2010

- Mobile Messaging Company
- Database backups were impacting production services.
- Very I/O intensive queries
 - and insufficient spindles
- Global Coverage
 - Scheduling backups was was a major issue.

2006

- Multiple Websphere JVM's on shared hardware.
- Memory leaks and CPU peaks were impacting other business services.

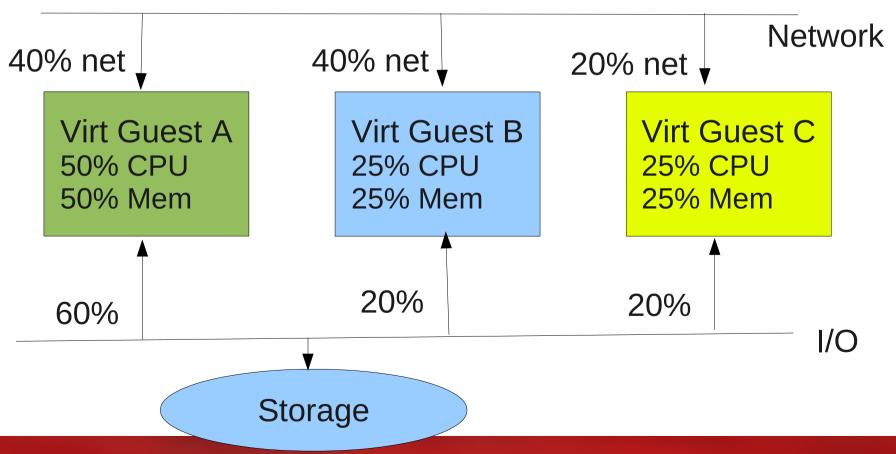
2003-2004

- Multi Vendor JVM testing
- Red Hat Enterprise Linux
 - Releases 2.1 and 3
- JRockit had some interesting performance characteristics
 - Can not SSH into host.
 - Physical TTY would timeout before login.
 - Power button wouldn't work.

Too Far back

1998-1999

- UK Based Development House
- Red Hat 5.0 Primary Server
 - IMAP email
 - Samba / AFS / NFS
 - GNU Cross-Compilers
 - GDB over serial for Embedded Hardware
 - Remote X via VNC to Mac Workstations
- Boss isn't getting his email



Modern Challenge - Virtualisation

Hosting providers requires QoS

(quality of service guarantees based on pricepoint)

How

Using CGroups

- Install cgroups support
 - yum install libcgroup
 - apt-get install cgroup-bin libcgroup1
- Setup a basic /etc/cgconfig.conf

```
. mount {
.          cpuset = /cgroup/cpuset;
.          cpu = /cgroup/cpu;
.          cpuacct = /cgroup/cpuacct;
.          memory = /cgroup/memory;
.    }
```

- Start the cgroups daemon
 - service cgconfig start

Command Line Tools

- cgexec
 - Start new process in specified group(s).
- cgclassify
 - Move process to specified group(s).
- cgcreate / cgdelete
 - Create and remove cgroups manually
- cgset
 - Modify defined cgroup

Subsystems - memory

- Limit memory usage of processes in a group
- Parameters (see memory.txt):

```
memory. limit_in_bytes — maximum allowed memory usage by tasks in the group.
```

memory.max_usage_in_bytes — maximum of used memory.

memory.stat – current memory statistics (RSS, swap, ...)

- Examples:
 - HTTP can take only 30% of memory.

Subsystems - cpu

- Set scheduler priority.
- Parameters:

cpu.shares – priority of threads in this group, relative to other groups.

- Example:
 - SQL can take 2x more CPU cycles than HTTP.

Subsystems - cpuacct

- Computes CPU cycles, burned by members of the group.
- Parameters:

```
cpuacct.usage - nr. of cycles.
cpuacct.usage_percpu - nr. of cycles per CPU.
```

- Example:
 - Members of 'developers' used 10⁷ cpu cycles.
 - Out of that, only 2x10⁶ cpu cycles were exhausted by mySQL.

Apache Example

Edit /etc/cgconfig.conf

```
 group http {
    memory {
        memory.limit_in_bytes = 1024M;
    }
    }
```

Next, add this to the /etc/sysconfig/httpd.conf:

```
· CGROUP_DAEMON="memory:/http"
```

The start cgconfig service and httpd

CGroups and Virtual Machines

- Allows to control libvirtd and any other process in the cgroup "virt"
 - Examples are memory ceiling / capping
 - Restrict which CPUs libvirt can utilise
- Add these rules to /etc/cgconfig.conf

```
 group virt {
    memory {
        memory.limit_in_bytes = 3.5G;
    }
    cpuset {
        cpuset.cpus = 1-3;
    }
}
```

Modify /etc/sysconfig/libvirtd and add

```
CGROUP_DAEMON="memory:/virt"
```


Subsystems - blkio

- Manages block and char I/O devices
 - proportional weight-based disk access
 - Weight from 1-1000
 - Upper limit throttling
 - Specify a fixed number of bps per device

Blkio Demo

- # restart cgroups
- · service cgconfig restart
- * # Setup the throttle as zero and then play with it.
- cd /cgroup/blkio/
- echo 253:0 \$((0*1024*1024)) > blkio.throttle.write_bps_device
- · #Monitor I/O with
- · iostat dm-0 3
- · # Then start DD on the volume
- · while true; do dd if=/dev/zero of=/tmp/test.out; done
- # Adjust blkio throttle and check iostart output
- echo 253:0 \$((20*1024*1024)) > blkio.throttle.write_bps_device
- echo 253:0 \$((10*1024*1024)) > blkio.throttle.write bps device
- echo 253:0 \$((1*1024*1024)) > blkio.throttle.write_bps_device

References

- RHEL 6 Resource Management Guide
 - http://docs.redhat.com/docs/en-US/Red Hat Enterprise Linux/6/html/Resource Management Guide
- Fedora Overview
 - http://fedoraproject.org/wiki/Features/ControlGroups
- Manage Your Performance with Cgroups and Projects
 - http://broadcast.oreilly.com/2009/06/manage-your-performance-with-cgroups-and-projects.html
- Zonker at ServerWatch on Cgroups
 - http://www.serverwatch.com/tutorials/article.php/3920051/Introduction-to-Linux-Cgroups.htm
- Using Cgroups under Debian
 - http://hydra.geht.net/tino/english/faq/debian/squeeze/cgroups/

Images

- Clipart
 - http://www.cksinfo.com/clipart/electronics/phones/mobilephones/camera-phone.png
- Corporate logos (c) current owners.
- Pointy Headed Boss c/o Scott Adams
 - Used under fair use, please contact me if you want this removed.

