
SELinux

Red Hat

Michal Marciniszyn

10th November 2010



Agenda

1 History

2 MAC vs DAC

3 Implementation

4 Benefits, Drawbacks & Myths

5 Example



Section 1

History



History

SELinux History

Originally developed by NSA as an implementation of Flask
OS security architecture.

First introduced in Linux by Fedora Core 2.

FC 2 SELinux in strict mode was not accepted by community.

Targeted policy was developed to be useable by broad
community and is nowadays part of several distros.



Section 2

MAC vs DAC



MAC vs DAC

What is DAC?

DAC stands for Discreet
Access Control.

Processes are given rights
based on UID and GIDs.

In other words, webserver
run by root can perform any
action root can perform.



MAC vs DAC

What is MAC?

MAC stands for Mandatory
Access Control.

Processes are given rights
based on what they need to
perform.

Webserver cannot access
/home/ directory.



Section 3

Implementation



Implementation

What is Security Policy

Defines Security Context:

User identity - defines which roles user can act as.
Role - defines which types user can access.
Type/Domain - main security distinction.
Sensitivity - MLS policy, used solely by military.
Category - security ’groups’.

Defines how each domain may access each type.

Defines transitions and other access.



Implementation

Targeted policy

Targeted policy uses type enforcement - each object and
subject has security context.

Only type is considered in targeted policy.

Context is stored in xattrs for files, in kernel for ports, NIS,
etc.

Format: user:role:type:sensitivity:category.

Users run in special domain - unconfined t not restricted by
SELinux.

Policy is tuneable using booleans that may allow certain
functionality on demand (httpd can read /public html)



Implementation

Tools

Whole toolset has been adjusted to work with SELinux,
usually by adding -Z option.

ls -Z, ps -Z, id -Z, install -Z, mkdir -Z, find -context

We have to be aware of different behaviour of cp vs. mv.

tar & star can archive SELinux context and are still backwards
compatible.

getfattr -d -m security.selinux -R /etc/

setfattr -h –restore=/tmp/backup.xattrs

getenforce, setenforce, getsebool, setsebool



Implementation

How does it work?

Files get context from the parent directory.

Contexts are defined in the policy.

When a daemon is started, transition rule states which
domain it will run in.

Policy states which access is allowed. Everything is disabled
by default.

Violation is logged.

Policy runs in kernel, to tackle SELinux, we have to exploit
kernel.



Section 4

Benefits, Drawbacks & Myths



Benefits, Drawbacks & Myths

Performance

Performance hit is few percent.

Few space on disk is needed to store context.

Usually one running daemon called auditd to log denials.



Benefits, Drawbacks & Myths

Benefits

We can restrict allmighty root.

Programs get only privileges they need.

Protects against exploits.

Divides security administrator vs. application administrator.



Benefits, Drawbacks & Myths

Myths

SELinux cannot perform code audits.

No encryption of data.

Services need to be updated.



Section 5

Example



Example

Dummy web page

We show how SELinux can prevent our box from very bad web
page.



Example

Question and answers...



The end.
Thanks for listening.


	History
	MAC vs DAC
	Implementation
	Benefits, Drawbacks & Myths
	Example

