
V0000000

Technical Workshop for FSI

OpenShift Virtualization

Mike Pagan

Principal Platform SA

Red Hat

1

V0000000

Agenda

2

● Review of Openshift virtualization (kubevirt)
● Management of Virtual Machines

○ Creation, Modification, and Retirement of VMs
○ Importing Virtual Machines
○ Viewing Virtual Machine Details
○ Virtual Machine Metrics

● Deep Dive on Openshift virtualization Technologies
● Openshift virtualization Cluster Architecture Options
● Deep Dive on VM Resources

○ Compute
○ Storage
○ Netrork

● Comparison of Openshift virtualization with Traditional Virtualization

V0000000

But first: Some Introductions

3

● Introductions
○ Who Am I
○ My history with Opeshift virtualization

● Logistics
○ Webex minutia
○ Time management

● Audience
○ Engineers & Admins

V0000000

What is OpenShift
Virtualization?

4

V0000000

Containers are not virtual machines

5

Infrastructure

Operating System

App 1 App 3App 2

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Infrastructure

Virtualization Containerization

App 1 App 3App 2

● Containers are process isolation

● Kernel namespaces provide isolation and

cgroups provide resource controls

● No hypervisor needed for containers

● Contain only binaries, libraries, and tools

which are needed by the application

● Ephemeral

V0000000

Virtual machines can be put into containers

6

● A KVM virtual machine is a process
● Containers encapsulate processes
● Both have the same underlying

resource needs:
○ Compute
○ Network
○ (sometimes) Storage

V0000000

OpenShift Virtualization

7

● Virtual machines
○ Running in containers
○ Using the KVM hypervisor

● Scheduled, deployed, and managed by Kubernetes
● Integrated with container orchestrator resources and

services
○ Traditional Pod-like SDN connectivity and/or

connectivity to external VLAN and other networks
via multus

○ Persistent storage paradigm (PVC, PV,
StorageClass)

V0000000

VM containers use KVM

8

● OpenShift Virtualization uses KVM, the Linux kernel
hypervisor

● KVM is a core component of the Red Hat Enterprise
Linux kernel
○ KVM has 10+ years of production use: Red Hat

Virtualization, Red Hat OpenStack Platform, and
RHEL all leverage KVM, QEMU, and libvirt

● QEMU uses KVM to execute virtual machines
● libvirt provides a management abstraction layer

HARDWARE

RHCOS
KVM

CPU/RAM STORAGE NETWORK

DRIVER DRIVER DRIVER

OTHER APPS
QEMU
libvirt

V0000000

Built with
Kubernetes

9

V0000000

Virtual machines in a container world

10

● Provides a way to transition application components
which can’t be directly containerized into a Kubernetes
system
○ Integrates directly into existing k8s clusters
○ Follows Kubernetes paradigms:

■ Container Networking Interface (CNI)
■ Container Storage Interface (CSI)
■ Custom Resource Definitions (CRD, CR)

● Schedule, connect, and consume VM resources as
container-native

RHEL CoreOS

OpenShift

Physical Machine

VM pod App pod

V0000000

Virtualization native to Kubernetes

11

● Operators are a Kubernetes-native way to introduce
new capabilities

● New CustomResourceDefinitions (CRDs) for native
VM integration, for example:
○ VirtualMachine

○ VirtualMachineInstance

○ VirtualMachineInstanceMigration

○ DataVolume

V0000000

Containerized virtual machines

12

Kubernetes resources
● Every VM runs in a launcher pod. The launcher process will

supervise, using libvirt, and provide pod integration.

Red Hat Enterprise Linux
● libvirt and qemu from RHEL are mature, have high

performance, provide stable abstractions, and have a
minimal overhead.

Security - Defense in depth
● Immutable RHCOS by default, SELinux MCS, plus KVM

isolation - inherited from the Red Hat Portfolio stack

Storage

Network

CPU

Memory

Device

V0000000

Using VMs and containers together

13

● Virtual Machines connected to pod networks
are accessible using standard Kubernetes
methods:
○ Service
○ Route
○ Ingress

● Network policies apply to VM pods the same
as application pods

● VM-to-pod, and vice-versa, communication
happens over SDN or ingress depending on
network connectivity

V0000000

Managin VMs with
OpenShift

14

V0000000

Virtual Machine Management

15

● Create, modify, and destroy virtual
machines, and their resources, using
the OpenShift web interface or CLI

● Use the virtctl command to
simplify virtual machine interaction
from the CLI

V0000000

Create VMs

16

V0000000

Virtual Machine creation

17

● Streamlined and simplified creation via the GUI or
create VMs programmatically using YAML

● Full configuration options for compute, network, and
storage resources
○ Clone VMs from templates or import disks using

DataVolumes
○ Pre-defined and customizable presets for

CPU/RAM allocations
○ Workload profile to tune KVM for expected

behavior
● Import VMs from VMware vSphere or Red Hat

Virtualization

V0000000

Create Virtual Machine - General

18

● Source represents how the VM will boot
○ Boot via PXE, optionally diskless
○ URL will import a QCOW2 or raw disk image

using a DataVolume
○ Container uses a container image, pulled

from a registry, for the disk
○ Disk uses an existing PVC

● Flavor represents the preconfigured CPU and
RAM assignments
○ Tiny = 1 vCPU and 1GB RAM, Small = 1 vCPU

and 2GB RAM, etc.
● Workload profile defines the category of

workload expected and is used to set KVM
performance flags

V0000000

Create Virtual Machine - Networks

19

● Add or edit network adapters
● One or more network connections

○ Pod network for the default SDN
○ Additional multus-based interfaces for

specific connectivity
● Multiple NIC models for guest OS compatibility or

paravirtualized performance with VirtIO
● Masquerade, bridge, or SR-IOV connection types
● MAC address customization if desired

V0000000

Create Virtual Machine - Storage

20

● Add or edit persistent storage
● Disks can be sourced from

○ Imported QCOW2 or raw images
○ New or existing PVCs
○ Clone existing PVCs

● Use SATA/SCSI interface for compatibility or
VirtIO for paravirtual performance

● For new or cloned disks, select from available
storage classes
○ Customize volume and access mode as

needed

V0000000

Create Virtual Machine - Advanced

21

● Customize the operating system deployment
using cloud-init scripts
○ Guest OS must have cloud-init installed
○ RHEL, Fedora, etc. cloud images

● Attach ISOs to the VM CD/DVD drive
○ ISOs stored in container images

(registry), existing PVC, or imported from
URL

V0000000

Create Virtual Machine - Review

22

● A summary of the decisions made
● Warnings and other important information

about the configuration of the VM are
displayed

● Choose to automatically power on the VM
after creation

V0000000

Import VMs

23

V0000000

Virtual Machine Import

24

● Wizard supports importing from VMware or
Red Hat Virtualization
○ Single-VM workflow

● VMware import uses VDDK to expedite the
disk import process
○ User is responsible for downloading the

VDDK from VMware and adding it to a
container image

● Credentials stored as Secrets
● ResourceMapping CRD configures default

source -> destination storage and network
associations

Add image here

V0000000

View / manage
VMs

25

V0000000

Virtual Machine - Overview

26

● General overview about the virtual machine
● Information populated from guest when

integrations are available
○ IP address

● Inventory quickly shows configured hardware
with access to view/manage

● Utilization reporting for CPU, RAM, disk, and
network

V0000000

Virtual Machine - Actions

27

● Actions menu allows quick access to
common VM tasks
○ Start/stop/restart
○ Live migration
○ Clone
○ Edit application group, labels, and

annotations
○ Delete

● Accessible from all tabs of VM details
screen and the VM list

V0000000

Virtual Machine - Details

28

● Details about the virtual machine
○ Labels, annotations
○ Configured OS
○ Template used, if any
○ Configured boot order
○ Associated workload profile
○ Flavor

● Additional details about scheduling
○ Node selector, tolerations, (anti)affinity

rules
● Services configured for the VM

V0000000

Virtual Machine - Console

29

● Browser-based access to the serial and
graphical console of the virtual machine

● Access the console using native OS tools,
e.g. virt-viewer, using the virtctl CLI
command
○ virtctl console vmname

○ virtctl vnc vmname

V0000000

Virtual Machine - Disks and NICs

30

● Add, edit, and remove NICs
and disks for non-running
virtual machines

V0000000

Destroy VMs

31

V0000000

Destroying a Virtual Machine

32

● Deleting a VM removes the VM definition
○ Optionally delete PVC-backed disks

associated with the VM
● Running VMs are terminated first
● Other associated resources, e.g. Services, are

not affected

V0000000

Metrics

33

V0000000

Overview Virtual Machine metrics

34

● Summary metrics for 1, 6, and 24 hour periods are
quickly viewable from the VM overview page

● Clicking a graph will display it enlarged in the
metrics UI

V0000000

Detailed Virtual Machine metrics

35

● Virtual machine, and VM pod, metrics are collected
by the OpenShift metrics service
○ Available under the kubevirt namespace in

Prometheus
● Available per-VM metrics include

○ Active memory
○ Active CPU time
○ Network in/out errors, packets, and bytes
○ Storage R/W IOPS, latency, and throughput

● VM metrics are for VMs, not for VM pods
○ Management overhead not included in output
○ Look at virt-launcher pod metrics for

● No preexisting Grafana dashboards

V0000000

Deeper into the
technology

36

V0000000

RHEL CoreOS Host

KubeVirt Container

Containerizing KVM

37RHV Host

RHV-M Console / CLI

vdsm

libvirt

QEMU / KVM

VM

Red Hat Virtualization

OpenShift Console / CLI

kubelet

libvirt

QEMU / KVM

VM

OpenShift Virtualization

OSP Compute

OpenStack Horizon / CLI

nova-compute

libvirt

QEMU / KVM

VM

Red Hat OpenStack Platform

V0000000

Architectural Overview

38

kubelet

(DaemonSet) Pod

virt-handler

Cluster Services Nodes

VM Pod

virt-launcher

Other Pod(s)

container 1

libvirtd container 2

VM container n

API Server

virt-controller

V0000000

Adding virtualization to the Kubernetes API

39

CRD and aggregated API servers
● These are the ways to extend the Kubernetes API in

order to support new entities
● For users, the new entities are indistinguishable from

native resources

Single API entry point for all workloads
● All workloads (containers, VMs, and serverless) are

managed through a single API

V0000000

Openshift
virtualization
cluster
architecture
options

40

V0000000

OpenShift cluster architecture #1

41

Everything everywhere - all 8 nodes are "workers"

○ Create the cluster with the control plane as schedulable
○ No dedicated infra nodes, no dedicated ODF(OCS) nodes
○ Pros: no wasted resources
○ Cons: must pay for all cores of all nodes, extra effort should be taken to ensure pods have

appropriate QoS to prevent resource contention exacerbating performance problems

Master Master Master

Worker Worker Worker Worker Worker Worker Worker Worker Worker Worker Worker

Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage

Infra

V0000000

OpenShift cluster architecture #2

42

Master Master Master Infra

Worker Worker Worker Worker Worker Worker Worker

Storage Storage Storage Storage Storage Storage Storage

Shared control plane, dedicated + combined infra

○ Schedulable control plane
○ Dedicated infra nodes for registry, logging, metrics, and ODF(OCS)
○ Pros: don't have to pay for infra node licenses
○ Cons: care needs to be taken to size nodes appropriately to not strand resources, e.g. "infra nodes are only 15%

utilized, but we can't put workload on those nodes without paying for the OCP entitlements"

Worker Worker Worker

V0000000

OpenShift cluster architecture #3

43

Master Master Master

Worker Worker WorkerWorker Worker Worker Worker

Storage Storage Storage

Dedicated control plane, dedicated infra

○ Non-schedulable control plane
○ Dedicated infra nodes for registry, logging, metrics, and ODF(OCS)
○ Pros: control plane resource isolation prevents contention from causing performance ripples
○ Cons: control plane nodes will almost certainly be dramatically under utilized, minimum 6 dedicated

nodes (3 control plane, 3 infra)

Storage Storage StorageStorage

Infra

V0000000

OpenShift cluster architecture #4

44

Master Master Master

Worker Worker Worker Worker Worker Worker Worker Worker

Storage Storage Storage

Shared control plane/worker/infra, dedicated ODF(OCS)

○ Scheduleable control plane, no dedicated infra
○ Pros: isolates OCS for performance/scale reasons
○ Cons: same as above - care needs to be taken to protect control plane workloads, must pay for infra cores

Infra

V0000000

OpenShift cluster architecture #5

45

Master Master Master

Worker Worker Worker Worker

Storage Storage Storage

Dedicated everything

○ Dedicated control plane, infra, and ODF(OCS) nodes
○ Pros: lots of isolation and protection for workloads
○ Cons: lots of potentially wasted resources (node right sizing is important!) and lots of nodes needed: 3 control plane, 3

ODF(OCS), 2 infra, + workers

Infra

V0000000

Deep Dive on
Virtual machine
Resources

46

V0000000

Containerized virtual machines

47

● Inherit many features and functions from Kubernetes
○ Scheduling, high availability, attach/detach resources

● Containerized virtual machines have the same characteristics as
non-containerized
○ CPU, RAM, etc. limitations dictated by libvirt and QEMU
○ Linux and Windows guest operating systems

● Storage
○ Use Persistent Volumes Claims (PVCs) for VM disks
○ Containerized Data Importer (CDI) import VM images

● Network
○ Inherit pod network by default
○ Multus enables direct connection to external network

V0000000

Virtual Machine Instances

48

● Fully based on Operators and Custom Resource Definitions
(CRDs)

● A VirtualMachine (VM) CRD represents a VM definition
● A VirtualMachineInstance (VMI) CRD represents a running virtual

machine
● The VM definition is optional, a VMI can be created directly

○ Can be used with standard network and storage connections
○ If persisting the VMI disks, a DataVolume is highly encouraged

to prevent the VMI from launching before the import is done

V0000000

Network

49

V0000000

Virtual Machine Networking

50

● Virtual machines optionally connect to the
standard pod network
○ OpenShift SDN, OVNKubernetes, etc.

● Additional network interfaces accessible via
Multus:
○ Bridge, SR-IOV
○ VLAN and other networks can be created

using nmstate at the host level
● When using at least one interface on the default

SDN, Service, Route, and Ingress configuration
applies to VM pods the same as others

V0000000

51

● Pod, service, and machine network are configured
by OpenShift automatically
○ Use kernel parameters (dracut) for

configuration at install
● Use kubernetes-nmstate, via the nmstate

Operator, to configure additional host network
interfaces
○ bond1 and br1 in the example to the right

● VM pods connect to one or more networks
simultaneously

The following slides show an example of how this
setup is configured

NodeNIC NIC

br0 br1

Service N
et

NIC

bond0

Pod N
et

Example host network configuration

NIC

bond1

SDN
Multus

Machine Net

V0000000

52

Host bond configuration

● NodeNetworkConfiguration-
Policy (NNCP)
○ Nmstate operator CRD
○ Configure host network

using declarative
language

● Applies to all nodes specified
in the nodeSelector,
including newly added nodes
automatically

● Update or add new NNCPs
for additional host configs

NodeNIC NIC

br0 br1

Service N
et

NIC

bond0

Pod N
et

NIC

bond1

SDN
Multus

Machine Net

V0000000

53

Host bridge configuration

NodeNIC NIC

br0 br1

Service N
et

NIC

bond0

Pod N
et

NIC

bond1

SDN
Multus

Machine Net

V0000000

54

Host network status

● Use the
NodeNetworkConfigurationEnactment

(NNCE) object to view status of NNCP
application

● Further details of the node network state
can be seen using the NodeNetworkState
CRD
○ oc get nns/node-name -o yaml

V0000000

55

Connecting Pods to networks

● Multus uses CNI network definitions in the
NetworkAttachmentDefinition to allow access
○ Net-attach-def are namespaced
○ Pods cannot connect to a net-attach-def

in a different namespace
● cnv-bridge and cnv-tuning types are used to

enable VM specific functions
○ MAC address customization
○ MTU and promiscuous mode
○ sysctls, if needed

● Pod connections are defined using an annotation
○ Pods can have many connections to many

networks

V0000000

56

Connecting VMs to networks

● Virtual machine interfaces describe NICs
attached to the VM
○ spec.domain.devices.interfaces

○ Model: virtio, e1000, pcnet, rtl8139, etc.
○ Type: masquerade, bridge
○ MAC address: customize the MAC

● The networks definition describes the
connection type
○ spec.networks

○ Pod = default SDN
○ Multus = secondary network using Multus

● Using the GUI makes this simple and removes the
need to edit / manage connections in YAML

V0000000

Storage

57

V0000000

Virtual Machine Storage

58

● OpenShift Virtualization uses the Kubernetes
PersistentVolume (PV) paradigm

● PVs can be backed by
○ In-tree iSCSI, NFS
○ CSI drivers
○ Local storage using host path provisioner
○ ODF/OpenShift Container Storage

● Dynamically or statically provisioned PVs
● RWX required for live migration
● Disks are attached using VirtIO or SCSI controllers

○ Connection order defined in the VM definition
● Boot order customized via VM definition

V0000000

VM disks in PVCs

59

● VM disks on FileSystem PVCs are created as thin
provisioned raw images
○ Thick provisioned disks are not created by CDI,

may be possible manually
● Block PVCs are attached directly to the VM
● CSI operations, e.g. snapshot and clone, are not

supported with VM disk PVCs
○ Use DataVolumes to clone VM disks

● PVC resize does not modify the size of the VM disk
○ Not currently supported

● Hot add is not supported (for any virtual hardware)

V0000000

DataVolumes

60

● VM disks can be imported from multiple sources using
DataVolumes, e.g. an HTTP(S) or S3 URL for a QCOW2 or
raw disk image, optionally compressed

● DataVolumes are created view explicit object definition or
as a part of the VM definition

● DataVolumes use the ContainerizedDataImporter to
connect, download, and prepare the image for OpenShift
Virtualization

● DataVolumes create PVCs based on defaults defined in
the kubevirt-storage-class-defaults ConfigMap

V0000000

Data source

61

CDI
Controller

PVC

PV

VM 1. The user creates a virtual
machine with a DataVolume

2. The StorageClass is used to
satisfy the PVC request

3. The CDI controller creates an
importer pod, which mounts
the PVC and retrieves the
disk image. The image could
be sourced from S3, HTTP, or
other accessible locations

4. After completing the import,
the import pod is destroyed
and the PVC is available for
the VM

Re
qu

es
ts

Import Pod

Write
s

Creates

1

2

3

4

Containerized Data Importer

V0000000

Ephemeral Virtual Machine Disks

62

● VMs booted via PXE or using a container image can be
“diskless”
○ PVCs may be attached and mounted as secondary

devices for application data persistence
● VMs based on container images use the standard

copy-on-write graph storage for OS disk R/W
○ Consider and account for capacity and IOPS

during RHCOS disk sizing if using this type
● An emptyDisk may be used to add additional

ephemeral capacity for the VM

V0000000

Helper disks

63

● OpenShift Virtualization attaches disks to VMs for
injecting data
○ Cloud-Init
○ ConfigMap
○ Secrets
○ ServiceAccount

● These disks are read-only and can be mounted by the OS
to access the data within

V0000000

Comparing with
traditional
virtualization
platforms

64

V0000000

Live Migration

65

● Live migration moves a virtual machine from one node to another in the OpenShift cluster
● Can be triggered via GUI, CLI, API, or automatically
● RWX storage is required, cannot use bridge connection to pod network
● Live migration is cancellable by deleting the API object
● Default maximum of five (5) simultaneous live migrations

○ Maximum of two (2) outbound migrations per node, 64MiB/s throughput each

Migration Reason vSphere RHV OpenShift Virtualization

Resource contention DRS Cluster policy Pod eviction policy, pod
descheduler

Node maintenance Maintenance mode Maintenance mode Maintenance mode, node
drain

V0000000

Automated live migration

66

● OpenShift / Kubernetes triggers pod rebalance actions based on multiple factors
○ Pod rebalance applies to VM pods equally and will result in a live migration

● Eviction policies
○ Soft
○ Hard

● Pod descheduler
● Pod disruption policy

V0000000

VM scheduling

67

● VM scheduling follows pod scheduling rules
○ Node selectors
○ Taints / tolerations
○ Pod and node affinity / anti-affinity

● Kubernetes scheduler takes into account many additional factors
○ Resource load balancing - requests and reservations
○ CPU pinning, NUMA
○ Large / Huge page support for VM memory

● Resources are managed by Kubernetes
○ CPU and RAM requests less than limit - Burstable QoS by default
○ K8s QoS policy determines scheduling priority: BestEffort class is evicted before

Burstable class, which is evicted before Guaranteed class

V0000000

Node Resource Management

68

● VM density is determined by multiple factors controlled at the cluster, OpenShift Virtualization,
pod, and VM levels

● Pod QoS policy
○ Burstable (limit > request) allows more overcommit, but may lead to more frequent

migrations
○ Guaranteed (limit = request) enables less overcommitment, but may have less physical

resource utilization on the hosts
● Cluster Resource Override Operator provides global overcommit policy, can be customized per

project for additional control
● VM pods request a small amount of additional memory, used for libvirt/QEMU overhead

○ Administrator can set this to be overcommitted
● Enable kernel same-page merging (KSM) by starting the daemon using a MachineConfig

V0000000

High availability

69

● Node failure is detected by Kubernetes and results in the pods from the lost node being
rescheduled to the surviving nodes

● VMs are not scheduled to nodes which have not had a heartbeat from virt-handler, regardless of
Kubernetes node state

● Additional monitoring may trigger automated action to force stop the VM pods, resulting in
rescheduling
○ May take up to 5 minutes for virt-handler and/or Kubernetes to detect failure
○ Liveness and Readiness probes may be configured for VM-hosted applications

V0000000

Terminology comparison

70

Feature RHV OpenShift Virtualization vSphere

Where VM disks are stored Storage Domain PVC datastore

Policy based storage selection None StorageClass SPBM

Non-disruptive VM migration Live migration Live migration vMotion

Non-disruptive VM storage
migration

Storage live migration N/A Storage vMotion

Active resource balancing Cluster scheduling policy Pod eviction policy,
descheduler

Dynamic Resource Scheduling
(DRS)

Physical network
configuration

Host network config (via
nmstate w/4.4)

nmstate Operator, Multus vSwitch / DvSwitch

Overlay network configuration OVN OCP SDN (OpenShiftSDN,
OVNKubernetes, and
partners), Multus

NSX-T

Host / VM metrics Data warehouse + Grafana
(RHV 4.4)

OpenShift Metrics, health
checks

vCenter, vROps

V0000000

Runtime
awareness

71

V0000000

Deploy and configure

72

● OpenShift Virtualization is deployed as an
Operator utilizing multiple CRDs, ConfigMaps,
etc. for primary configuration

● Many aspects are controlled by native Kubernetes
functionality
○ Scheduling
○ Overcommitment
○ High availability

● Utilize standard Kubernetes / OpenShift practices
for applying and managing configuration

V0000000

Compute configuration

73

● VM nodes should be physical with CPU virtualization technology enabled in the BIOS
○ Nested virtualization works, but is not supported
○ Emulation works, but is not supported (and is extremely slow)

● Node labeler detects CPU type and labels nodes for compatibility and scheduling
● Configure overcommitment using native OpenShift functionality - Cluster Resource Override

Operator
○ Optionally, customize the default project so that non-VM pods are not overcommitted
○ Customize projects hosting VMs for overcommit policy

● Enable KSM using MachineConfig, ballooning is not supported
● Apply Quota and LimitRange controls to projects with VMs to manage resource consumption

V0000000

Network configuration

74

● Apply traditional network architecture decision framework to OpenShift Virtualization
○ Resiliency, isolation, throughput, etc. determined by combination of application, management,

storage, migration, and console traffic
○ Most clusters are not VM only, include non-VM traffic when planning

● Node interface on the MachineNetwork is used for “primary” communication, including SDN
○ This interface should be both resilient and high throughput
○ Used for migration and console traffic
○ Configure this interface at install time using kernel parameters, reinstall node if configuration

changes
● Additional interfaces, whether single or bonded, may be used for traffic isolation, e.g. storage and

VM traffic
○ Configure using nmstate Operator, apply configuration to nodes using selectors on NNCP

V0000000

Storage configuration

75

● Local storage may be utilized via the Host Path Provisioner
○ Local-only, non-shared storage means no live migration

● Create shared storage from local resources using ODF/OpenShift Container Storage
○ RWX file and block devices for live migration

● No preference for storage protocol, use what works best for the application(s)
● Storage backing PVs should provide adequate performance for VM workload

○ Monitor latency from within VM, monitor throughput from OpenShift
● For IP storage (NFS, iSCSI), consider using dedicated network interfaces

○ Will be used for all PVs, not just VM PVs
● Certified CSI drivers are recommended

○ No CSI snapshot integration
○ Non-certified work, but do not have same level of OpenShift testing

V0000000

Deploying a VM operating system

76

Creating virtual machines can be accomplished in multiple ways, each offering different options and capabilities
● Start by answering the question “Do I want to manage my VM like a container or a traditional VM?”
● Deploying the OS persistently, i.e. “I want to manage like a traditional VM”

○ Methods:
■ Import a disk with the OS already installed (e.g. cloud image) from a URL or S3 endpoint using a

DataVolume, or via CLI using virtctl
■ Clone from an existing PVC or VM template

○ VM state will remain through reboots and, when using RWX PVCs, can be live migrated
● Deploying the OS non-persistently, i.e. “I want to manage like a container”

○ Methods:
■ Diskless, via PXE
■ Container image, from a registry

○ VM has no state, power off will result in disk reset. No live migration.
● Import disks deployed from a container image using CDI to make them persistent

V0000000

Deploying an application

77

Once the operating system is installed, the application can be deployed and configured several ways
● The application is pre-installed with the OS

○ This is helpful when deploying from container image or PXE as all components can be managed and
treated like other container images

● The application is installed to a container image
○ Allows the application to be mounted to the VM using a secondary disk. Decouples OS and app lifecycle.

When used with a VM that has a persistently deployed OS this breaks live migration
● The application is installed after OS is installed to a persistent disk

○ cloud-init - perform configuration operations on first boot, including OS customization and app
deployment

○ SSH/Console - connect and administer the OS just like any other VM
○ Ansible or other automation - An extension of the SSH/console method, just automated

V0000000

Additional
resources

78

V0000000

More information

79

● Openshift Test Drive:
○ https://www.redhat.com/en/technologies/cloud-computing/openshift/try-it

● Documentation:
○ OpenShift Virtualization: https://docs.openshift.com
○ KubeVirt: https://kubevirt.io

● Demos and video resources: http://demo.openshift.com
● Labs and workshops: coming soon to RHPDS

https://www.redhat.com/en/technologies/cloud-computing/openshift/try-it
https://docs.openshift.com
https://kubevirt.io
http://demo.openshift.com

V0000000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

80

