
1

Lunch ‘n Learn

ZFS/BTRFS/VxFS:
Equivalent functions in RHEL

Mike Pagan
Sr. Platform Strategist

CONFIDENTIAL Designator

2

RED HAT ENTERPRISE LINUX 8

The purpose of this presentation: To help Linux engineering and operations

be aware of the features in RHEL which allow equivalent functionality to

legacy filesystems like ZFS, BTRFS, and VxFS

Use Case: RHEL 6-7-8 upgrade

Why do we need alternatives to these filesystems?

3

What are the factors driving the need

● ZFS
○ ZFS is feature-rich
○ Solaris shops depend on some of its features
○ ...but ZFS is Oracle-proprietary and not open source
○ ...and OpenZFS is not exactly the same as the Solaris version, with less

hardening and enterprise usage
● BTRFS

○ Red Hat kept BTRFS in tech preview for many revisions of RHEL
○ In all that time, BTRFS never achieved enough stability for production

use
○ There is no plan to go back and incorporate BTRFS into RHEL

● VxFS
○ Commercial product of Veritas (Symantec)
○ Commonly carried forward as a part of a Linux SOE from legacy Unix

(Solaris, HP-UX, AIX)
○ Feature-rich but fairly expensive
○ VxFS experienced admins are getting scarce

UNDER NDA ONLY

ZFS-to-RHEL Feature Comparison

4

ZFS RHEL

Encryption LUKS 2.001
Pooling LVM02
SSD hierarchical storage dm-cache03
Data scrubbing dm-integrity04
Deduplication & Compression VDO05
Unified configuration Stratis06

UNDER NDA ONLY

ZFS-to-RHEL Feature Comparison (continued)

5

ZFS RHEL

Copy-on-Write LVM snapshots & thinp07
Scalability XFS08
Snapshots LVM09
Data versioning N/A (LVM snapshots)10
RAID-Z LVM11
Delegated Permissions N/A12

Encryption

ZFS encryption vs. RHEL encryption

Encrypting root disks
● ZFS can not encrypt root disks
● RHEL dm-crypt can encrypt root disks

Integration
● ZFS disk encryption is built in to the filesystem
● RHEL disk encryption is achieved by device mapper (dm-crypt) and integrated via RHEL

Storage Roles (Ansible) and Stratis

Disk encryption at scale
● RHEL includes network-based disk encryption (NBDE), which allows disk decryption at

boot time without storing encryption keys “in the clear”
● ZFS encrypted disk “wrapper” keys can be stored on a centralized server, with security

dependant on that server.

Ciphers
● ZFS disk encryption uses AES
● RHEL disk encryption uses AES, twofish, or serpent

RED HAT ENTERPRISE LINUX

Setting up a LUKS2-encrypted volume in RHEL

8

Start with an unmounted filesystem
Subsequent reencryption can be done
with the filesystem mounted

Add some extra free space (in case you
don’t have it)
This makes room for the encryption
header. This header can be external to
the volume if necessary

Run “cryptsetup” with --init-only
This prepares the volume and creates the
entry in device-mapper

Mount & re-run “cryptsetup
This performs the actual encryption

RED HAT ENTERPRISE LINUX

umount /vgXX/<volume>

lvextend -L+32M /vgXX/<volume>

cryptsetup reencrypt --encrypt --init-only \
 Reduce-device-size 32M /vgXX/<volume> <volume>_encrypted

mount /dev/mapper/<volume>_encrypted \
 /mnt/<volume>_encrypted

cryptsetup reencrypt --resume-only /vgXX/<volume>

Storage Pooling
Snapshots
RAID

ZFS pooling & snapshots vs. RHEL pooling & snapshots

Integration
● ZFS disk pooling & snapshots are built in to the filesystem
● RHEL disk pooling, RAID & snapshots are provided by LVM
● Integration in RHEL provided through Stratis
● API-based management of pools, RAID, and snapshots provided via System Roles

(Ansible)

Functionality
Pooling, RAID, and snapshots have been long-standing features of LVM in RHEL and are
well-adopted across the user base. .

RED HAT ENTERPRISE LINUX

RAID

ZFS offers RAID-Z
Proprietary software RAID format with several interesting features

RHEL provides RAID in LVM
Software RAID has been a core feature in RHEL since RHEL 3, providing:

● RAID-0
● RAID-1
● RAID-10

Performance Considerations
RAID-0 and RAID-1 provide improved or neutral performance vis-a-vis individual volumes.
However, RAID-5 and -6 (as well as their equivalent RHAID-Z options) impose a significant
performance impact. Real-world use has shown that higher RAID levels are typically
implemented in hardware, not software.

RED HAT ENTERPRISE LINUX

● RAID-5
● RAID-6

Storage pooling, RAID, and snapshot commands in RHEL

12

Volume group setup
The examples on the left presume a basic
volume group setup previously done with
the “vgcreate”, “pvcreate”, and
“vgextend” commands

Pooling
Pooling is automatic within a volume
group, with all “lvcreate” commands
operating against the entire pool or a
chosen subset.

RAID and mirroring
RAID volumes (including mirroring, aka
“RAID-1”) draw from the same volume
group pool

Snapshots
Snapshots create a new logical volume in
the same pool.

RED HAT ENTERPRISE LINUX

Create a typical volume of size 10GB named “myvolume”from
pooled storage in volume group “vgXX”
lvcreate -L 10G -n myvolume vgXX

Create a RAID-0 volume across two physical devices with a
stripe size of 64MB
lvcreate -L 10G -i2 -I64M -n striped_volume vgXX

Create a one-way RAID-1 (mirrored) volume across two
physical devices
lvcreate -L 10G -m1 -n mirrored_volume vgXX

Create a snapshot of volume “lvolX” limited to 100MB
lvcreate -size 100M --snapshot --name snap_lvolX \
 /dev/vgXX/lvolX

SSD Hierarchical Storage

Cacheing/Hierarchical Storage: ZFS vs. RHEL

ZFS vs. RHEL dm-cache
● ZFS uses ZIL for all write operations (ZFS Intent Log), which can be placed onto a

separate logging device such as an SSD
● ZFS read caching implemented as an L2 cache above RAM read cache
● RHEL implements hierarchical storage in device mapper (dm-cache)

RHEL SSD cache administration options
● You can work directly with dm-cache...
● However, it is easier to do within LVM as part of the “lvcreate” command, which will

front-end dm-cache for you

RED HAT ENTERPRISE LINUX

Using hierarchical storage in RHEL

15

Volume group setup
As with earlier slides, the examples on
the left presume a basic volume group
setup previously

LVM method
In the first example, we use “lvcreate”
with options to include an SSD cache

Cache and meta volumes
Note that the operation requires a cache
volume (relatively large) and a meta
volume (relatively small). Both should be
on fast (SSD) devices

RED HAT ENTERPRISE LINUX

Create a a 100GB logical volume on an SSD and name it
“cachedisk”
lvcreate -L 100G -n cachedisk vgXX /dev/<SSD>

Create a 4GB logical volume on an SSD and name it
“metadisk”
lvcreate -L 4G -n metadisk vgXX /dev/<SSD>

Add the SSD cache and meta volumes to an already existing
magnetic disk (named “magdisk”)
lvconvert --type cache-pool /dev/VGXX/cachedisk \
--poolmetadata /dev/data/metadisk
lvconvert --type cache /dev/vgXX/magdisk --cachepool \
/dev/data/cachedisk

Data Scrubbing

Data Scrubbing in RHEL 8

What is data scrubbing?
● Data scrubbing in this case means scanning a mounted filesystem for bit rot (silent data

errors)
● It does NOT mean wiping disks for disposal
● Data scrubbing can become more important as the size of mounted filesystems increases;

even if a silent data error is a vanishingly small possibility, when you have hundreds of
Terabytes to Petabytes of data, it can become a problem.

● Data scrubbing can be needed even if you have other forms of data protections (like
mirroring or RAID)

Data scrubbing in RHEL 8 vs. RHEL 7 and prior
● In RHEL 8, data scrubbing is provided by device mapper via dm-integrity
● In prior version of RHEL, data scrubbing is not provided

Consider using Ceph for extremely large data
● Data scrubbing is built in to Ceph Bluestore

RED HAT ENTERPRISE LINUX

How does data scrubbing work in RHEL 8?

It is provided by dm-integrity, which is part of dm-crypt (disk encryption)
● The goal of data scrubbing is “bit rot detection.” We want to be warned if a bit or bits have

flipped in data at rest
● It is achieved by taking a checksum of the data on every write and periodically taking that

checksum “at rest” to see if it matches

Pros and cons of data scrubbing in RHEL
● This feature is fully supported in RHEL 8, but should be approached with caution
● Data scrubbing imparts overhead on the system:

○ It imposes an overhead on every write (computation of checksum)
○ It consumes extra space for the checksum header
○ It imposes system overhead for periodically comparing checksums

● In RHEL data scrubbing is implemented at the device level, not the filesystem leve. So it
can be used with XFS, ext4, etc.

RED HAT ENTERPRISE LINUX

Using data scrubbing in RHEL 8

19

First, enable a device for data scrubbing
Use the “format” opeiton on
inegritysetup to initialize a storage
device. This will reserve some space in
the header and compute the checksum
for the first time.

Open the device to access it as a
scrubbed block device
Use the “open” option to assing a
previously enabled device to a name from
which you can access the now-monitored
data.

RED HAT ENTERPRISE LINUX

Initial setup of a block storage device with data
scrubbbing
integritysetup format /dev/vgXX/<LVOL>

Open a data-scrubbing enabled device, assigning it the name
<NAME> for use
integritysetup open /dev/vgXX/<LVOL> <NAME>

Now create a filesystem on the scrubbing-enabled device
mkfs.xfs /dev/mapper/<NAME>

Deduplication & Compression

2
1

What is Virtual Data Optimizer?
Modular Data Reduction for Red Hat Enterprise Linux

● A data reduction module for the Linux device mapper.

● Installs on top of a Linux block device to provide:
○ In-line, on-the-fly deduplication

○ Performance-optimized data compression

○ Thin provisioning and zero block elimination

● Managed via CLI or with Cockpit

● Based on technology assets acquired from Permabit Technology Corporation

● Fully supported feature in Red Hat Enterprise Linux 7.5

2
2

● Allows repurposing of existing storage resources

● Reduces cost of cloud consumption-based pricing

● Extends the life of storage hardware

● Increases affordability of high performance storage

● Reduces the time it takes to replicate storage devices

What are the benefits of VDO?
Business impact of reduced data footprint

2
3

How does VDO work?

VDO data reduction processing

Eliminate zero
blocks

Eliminate
duplicate blocks

Compress
remaining blocks

Thin
provisioning

4
KB

 d
at

a
bl

oc
ks Data

deduplication
Data
compression

● Operates inline, on-the-fly
● Works at the block level, with the file system of your choice
● Each VDO volume supports up to 256 TB physical and 4 PB logical storage

2
4

Where is VDO deployed?
Virtual or physical systems, on-premise or in the cloud

Application LIO NFS, CIFS

LVM
Filesystem

LVM

Filesystem

LVM

VDO VDOVDO

Block DevBlock Dev Block Dev

Local or Networked Storage

Local Block File

kernel

● Hardware agnostic

● Addresses hardware and software approaches
to storage

● Works directly with block devices and
filesystems

● Functions in cloud or on premises

● Addresses the four storage consumption
models

Network (FC, ISCSI, IB, IP)

OS Requirements

● RHEL 7.5 or later
RAM

● Base: 500 MB

● Plus: 268 MB per TB of physical storage
CPU

● x86_64 (exploring other processor platforms for future releases)

What System Resources does VDO require?

2
5

These are minimums

2
6

● Deduplication is always done inline, on-the-fly

○ No guessing about storage consumption
○ No bursts of performance impact from optimization done in the background

● VDO operates efficiently at 4 KB granularity
○ A 4 KB change to a 128 KB data chunk will still allow you to save 124 KB (97%)
○ VDO is able keep track of 4 KB blocks with low memory overhead (0.03%*)

● VDO operates at scale
○ VDO supports up to 256 TB of physical (after protection) storage
○ VDO presents up to 4 PB of logical storage

● VDO is designed to perform with random IO workloads
○ Blocks only get compressed the first time they are seen (fewer CPU cycles)
○ Reading in 4 KB of data doesn’t require more than 4 KB of IO

How is VDO different?
Inline, granularity, scale and performance

* Memory to physical storage overhead, 10 TB volume

2
7

For more information...
Red Hat documentation resources for VDO configuration, tuning and management

The Storage Administration Guide for Red Hat Enterprise Linux includes a section on
VDO:

● https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administr
ation_guide/vdo

Topics addressed include:
● Theoretical Overview of VDO
● System Requirements
● Getting Started with VDO
● Administering VDO

● Deployment Scenarios
● Tuning VDO
● VDO Commands
● Statistics Files in /sys

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/vdo
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/vdo

Unified Configuration

Project Stratis

CONFIDENCE

29

Is easy to use

Automates best practices

Reduces complexity

Integrated volume and file system management

What is Stratis?

● Stratis is a storage management too, not a filesystem
● Stratis is a local tool, running on each individual server
● Stratis integrates multiple layers of technology which already exist in RHEL

○ LVM
○ Device mapper
○ VDO

● The Stratis daemon manages collections of block devices via:
○ GUI
○ CLI
○ D-bus API

RED HAT ENTERPRISE LINUX

How Does Stratis Operate?

● Stratis manages three types of objects
○ Block devices
○ Pools
○ Filesystems

● The objects are organized according to this hierarchy:
○ Block devices include physical or virtual disks, LVM volumes, multipath

devices, etc.
○ Pools are created from one or more block devices
○ Filesystems are created from pools

RED HAT ENTERPRISE LINUX

Major Stratis Features

● Snapshot management
● Thin provisioning
● Caching/hierarchical storage via SSDs
● Compression & deduplication
● Monitoring, notification, and maintenance of:

○ Avoidance of data corruption
○ Switching filesystems to read-only mode
○ Grow filesystems (shrink? - not yet)
○ Fstrim
○ Write throttling

● Future plans:
○ Encryption management
○ Integrity checking/scrubbing
○ Redundancy management

RED HAT ENTERPRISE LINUX

Stratis operations (CLI)

33

One-command installation
“Yum install…”

Operates as a systemd service
Inherits all normal systemd features
(journald, cgroups…)

Simple CLI commands
“Do What I Mean”

RED HAT ENTERPRISE LINUX

Installation
yum install stratis-cli stratisd

Enabling
systemctl start stratisd
systemctl enable --now stratisd

Operations
stratis pool create demo_pool /dev/vdb /dev/vdc
stratis pool list
stratis pool add-data demo_pool /dev/vdd
stratis filesystem create demo_pool demo_filesystem1

Scalability

Matching scalability in RHEL

RHEL XFS
● XFS is open-source and non proprietary
● It is the default filesystem starting with RHEL 8

RED HAT ENTERPRISE LINUX

XFS ZFS

Max single file size 263 -1 bytes 16 EB (264 bytes)

Max pool size 263 -1 bytes 2128 Bytes

Max # files per directory 264 248

Data Versioning &
Copy-on-Write

Data versioning in RHEL-supported filesystems

No data versioning currently in RHEL 8.3 or earllier
● Consider using snapshots?
● Could be provided by some external tools

RED HAT ENTERPRISE LINUX

Copy-on-Write in RHEL

RHEL partial support of copy-on-write filesystems
● Both RHEL and ZFS use copy-on-write to support snapshots
● RHEL does not support copy-on-write for all filesystem operations
● This feature is the underlying technology that supports data versioning in ZFS

RED HAT ENTERPRISE LINUX

Delegated Permissions

Delegated permissions in RHEL

What are delegated permissions in ZFS?
● Allows a non-root user with permissions on a directory or file to other users
● More fine-grained than just user, group, and world permissions

No delegated permissions on filesystemd currently in RHEL 8.3 or earlier
● But, RHEL does support ACLs (Access Control Lists)
● ACLs can be used to effect most of the features of delegated permissions

RED HAT ENTERPRISE LINUX

Questions?

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

