
Ansible 
Automation: 
A Story from the 
Trenches
David Glaser
Senior Technical Account Manager
11/20/2019



Me!

Engineer

Senior Technical Account Manager

Red Hat
Certified

dglaser@redhat.com
grizz@redhat.com
Tel: 3124774368
Mobile: 81028441854
Certification number: 100-135-995

David Glaser

Red Hat, Inc.
227 W. Monroe Street
Chicago, IL 60606



Ansible is a tool, automation is a skill

- Large customer with thousands of hosts

- Migrating from Chef to Ansible

- Customer team produced a set of Ansible playbooks and roles, then requested we review 
them

- We found a number of improvements, both obvious and subtle



Facts or no Facts?



Ansible Fact Gathering

CPU and 
memory

Service 
Status

Network 
interfaces Disk usage

Product 
management

Hardware 
information



Problem?

- name: RHEL Base configurations
   hosts: all
   gather_facts: no
   tasks:
   - name: checking host platform
      setup:
        filter: ansible_distribution
      register: host_distribution

   - name: checking host version
      setup:
        filter: ansible_distribution_major_version
      register: host_major_version



When to gather facts

- Ansible gathers facts by default
- Don’t gather facts when you need speed and won’t be using any of 

the facts on the host
- Filtering of facts happens on return, so there’s no speed up 



Shell and Command 
modules



More shells than MarioKart!

- About 70% of the tasks were shell tasks
- Most instances could be replaced with Ansible modules

- Shell and command modules use should be minimized
- Not idempotent
- Shell uses the environment of the user on the host which can be dangerous
- Unless modified, always show up as a ‘changed’ return value
- Harder to diagnose issues

- Use Ansible modules whenever possible
- Make sure they are from a trusted source



1

2

3

4

Module Priority

Red Hat supported modules built into Ansible Engine

Vendor modules

Community modules (Ansible Galaxy, Github, etc)

command and shell modules



Know what you can 
Handle(er) 



Problem?
- name: Create user
  user:
    name: idm
    home: "/opt/IDMfile"
    shell: /bin/ksh
    state: present
  notify:
      - restart nscd
      - Create IDMfile directory
      
- name: create kshrc file
  copy:
    src: dot-kshrc
    dest: /opt/IDMfile/.kshrc
    owner: idm
    group: root
    mode: '0600'

# handlers
- name: restart nscd

         service:
            name: nscd
            state: restarted

- name: Create IDMfile directory
file:
    path: /opt/IDMfile
    owner: idm
    group: root
    mode: '0755'
    state: directory



Use Handlers wisely

- Handlers get run at the end of a play, not where they are called
- Handlers are only run on a change. If the play calling them does not result in a changed 

state, the handler is ignored
- Should not put anything in a play after a handler that is dependant on that handler unless 

you use a meta: flush_handlers routine 



Keep it simple



Make your playbooks easy to read

Ansible should be written consistently

- Tasks can be written as a single line per parameter or multiple lines per parameter using 
an ‘=’ sign. Decide on one and stick to it.

Use
module: 

    name: value1
      state: value2 
Or

module: name=value1 state=value2



Make your playbooks easy to read

Ansible should be easy to understand

- Simplify the logic used in when statements
- Use ‘not’ only when needed

- when: not variable == “no”
- when: variable != “no”



Make your playbooks easy to read

Ansible should be easy to understand

- Simplify the logic used in when statements
- Use ‘not’ only when needed

- when: not variable == “no”
- when: variable != “no”

- Separate when statements that contain logical and(s) on separate lines
- when: variable1 == “17” and variable2 == “Stand” and variable3 is defined
- when:

- variable1 == “17”
- variable2 == “Stand”
- Variable3 is defined



Just Do it 
(Apologies to Nike)



Problem?

- set_fact:
    file_attr_immutable: "immutable"
- stat:
    path: "/etc/file.cfg"
  register: file_status
- name: check the file immutable and set it off
  file:
    path: "/etc/file.cfg"
    state: file
    attributes: -i
  when:  file_status.stat.exists and file_attr_immutable in file_status.stat.attributes



Automate to the end state

- Don’t put in extra tasks if you aren’t using them. 
- Don’t check for a state if you are going to (possibly) reset that state
- Use tags or debug levels to execute certain tasks under certain conditions



Fail early and Fail often



Problem?
  - name: Install/Upgrade PatchClient
    package:
      name: PatchClient
      state: latest

  - name: Configure the PatchCLient
    shell: "bash /opt/PatchClient/config.sh client.dat > /dev/null"
    when: client.dat is defined

    



Try not to partially run tasks

- Check for error conditions (undefined variables, missing files, etc) early in a play
- Block groups of statements together so they complete or fail as a group 

    



Try not to partially run tasks

- Check for error conditions (undefined variables, missing files, etc) early in a play
- Block groups of statements together so they complete or fail as a group 

  - name: Set up PatchClient
     block:
          - name: Install/Upgrade PatchClient 
             package:
            name: PatchClient
               state: latest

          - name: Configure the PatchCLient
             shell: "bash /opt/PatchClient/config.sh client.dat > /dev/null"
      when: client.dat is defined

    



Summary



Summary 

Look at your playbooks as a whole
Don’t lose the forest for the trees

Use best practices and recommendations
https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html

Don’t be afraid to ask others to review
Come, come, Mr. Scott. Young minds, fresh ideas. Be tolerant. - James T. Kirk

Automation is a process
Many different ways and levels of automation with Ansible



Questions


