
Ansible for Legacy Systems
Overview and Strategy

Kevin White
Technical Account Manager



What we’ll 
discuss today

Agenda

● Why use Ansible on Legacy?

● Compatibility Notes

● Suggested Strategy

● Example of Incremental Projects



Why Use Ansible on Legacy?

Why Use Ansible on Legacy?

● Everyone like to talk about New Things
○ Greenfield deploys promise a reset of history
○ Less need to change existing patterns
○ The hope that this time we will Do Things Right

● But legacy systems persist!
○ Longstanding platforms
○ Often business critical
○ Heavy costs associated with downtime or runtime errors
○ Deep layers of configuration and management infrastructure



Seriously, Why Use Ansible on Legacy?

Why Use Ansible on Legacy?

● The reasons we avoid it are why we should!
● The problems are known
● Complexity means plenty of small, high-impact 

improvements are possible
● Expense of downtime means ease of demonstrating 

project ROI 



First, A Note on Compatibility

Compatibility

● Since Ansible 2.5, managed nodes require a minimum of Python 2.6 or 3.5
○ Individual modules may have higher requirements

● For Ansible 2.11, control node has a “soft dependency” on Python 3.8
● Consult the supported configurations page for the list of supported platforms.

https://access.redhat.com/articles/3168091


Strategy: Salami Slicing

Strategy

● This is not one major project. This is a series of small 
projects.

● Each project has a specific, targeted goal.
● Aim for a specific improvement to stability, quality of 

life, and/or operational procedure
● Be pragmatic, but keep the future in mind
● “If the next project isn’t approved, we’ve still made a 

difference.”



Examples

Examples



Phase 1: Basic Version Control

Examples

● Goal: Clean the folders, deploy files from git
● Process Improvements:

○ Better change staging
○ Stop manual edits of controlled files
○ Easier rollback to current approved state
○ Old file states accessible through version control

● ROI wins: 
○ Easier change execution
○ Fewer outages from out-of-band changes
○ Easier reversion of changes means shorter 

outages



Phase 2: Templates

Examples

● Goal: Templated configs and scripts
● Process Improvements:

○ Use templating to fill in or generate configs
○ Draw from Source of Truth 
○ Reduce manual editing

● ROI wins: 
○ Further reduce outages from manual edits



Phase 3: Ambition Grows

Examples

● Goal: Refactoring
● Ideas:

○ Use Ansible templating for node-specific logic
○ Rework portion of LOB buildout
○ Replace management scripts with Ansible 

Playbooks



Summary

Summary

● Incremental projects
● Pragmatism
● Every win is a win



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat


