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Containers

● "Linux Containers" is a Linux kernel feature to contain a group of processes in an 
independent execution environment.

● Linux kernel provides an independent application execution environment for each 
container including:
● Independent filesystem
● Independent network interface and IP address.
● Usage limit for memory and CPU time.

● Linux containers are realized with integrating many existing Linux features. There 
are multiple container management tools such as lxctools, libvirt and docker. 
They may use different parts of these features.
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Container History

20
00

20
10

20
05

20
15

2000: 
JAILS ADDED 
TO FREEBSD

2006: 
GENERIC PROCESS 
CONTAINERS

2008: 
KERNEL AND USER 
NAMESPACES

2014: 
GOOGLE 
KUBERNETES 

2008: 
LINUX CONTAINER 
PROJECT (LXC)

2015: 
STANDARDS VIA OCI 
AND CNCF

2013: 
RED HAT 
ENTERPRISE LINUX

2013: 
DOTCLOUD 
BECOMES DOCKER

2007: 
GPC RENAMED 
CONTROL GROUPS 

2003: 
SELINUX ADDED TO 
LINUX MAINLINE

2015: 
RHT CONTAINER 
PLATFORMS

2015: 
RHEL ATOMIC HOST

2001: 
LINUX -VSERVER 
PROJECT

2013: 
DOT CLOUD PYCON 
LIGHTNING TALK

2005: 
FULL RELEASE OF 
SOLARIS ZONES
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Underlying Technology

Enabling Technology in Linux has been present for many years
● Namespaces

● Process
● Network
● Filesystem
● User
● IPC
● UTS (UNIX Technology Services)

● cgroups - Control Groups
● Union (overlay) Filesystems



Namespaces
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Original UNIX Process Tree
● First process is PID 1
● Process tree rooted at PID 1
● PIDs with appropriate privilege may 

inspect or kill other processes in the 
tree

Linux Namespaces
● Multiple, nested process trees
● Nested trees cannot see parent tree
● Process has multiple PIDs

● One for each namespace it is a 
member of

Process Namespaces
1
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Network Namespaces
Presents an entirely separate set of network 
interfaces to each namespace
● All interfaces including loopback are 

virtualized
● Ethernet bridges may be created

● ip link add name veth0 type 
veth peer name veth1 netns 
<pid>

● Routing process in global namespace to 
route packets

Original Namespace:
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp4s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
    link/ether 00:24:8c:a1:ac:e7 brd ff:ff:ff:ff:ff:ff

New Namespace:
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
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Child net namespace
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Filesystem Namespaces
Clone / Replace list of mounted filesystems
● Similar to chroot
● Allows isolation of all mount points, not just 

root
● Atrributes can be changed between 

namespaces (read only, for instance)
● Used properly, avoids exposing anything 

about underlying system
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User Namespaces
Replace / Extend UID / GID
● Delete unneeded UID / GID from container
● Add / change UID / GID map inside 

container
● Use: root privilege in container, user 

privilege in base OS
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IPC Namespaces
Similar to network namespaces
● Separate interprocess communications 

resources
● Sys V IPC
● POSIX messaging
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UTS Namespaces
UTS : UNIX Technology Services
● Change inside container:

● Hostname
● Domain



15

Feature availability

● Filesystem separation
● Hostname separation 
● IPC separation
● User (UID/GID) separation
● Processtable separation
● Network separation
● Usage limit of CPU/Memory

● Mount namespace (kernel 2.4.19)
● UTS namespace (kernel 2.6.19)
● IPC namespace (kernel 2.6.19)

● User namespace (kernel 2.6.23 〜 kernel 3.8)
● PID namespace (kernel 2.6.24)
● Network Namespace (kernel 2.6.24)
● Control groups
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Namespaces Summary
Isolation / Modification of Container processes from host
● PIDs
● Network
● Filesystems
● UID/GID
● IPC
● Hostname / Domain

See documentation on clone() system call for more complete details on functionality 
(Warning: systems programmer jargon territory)



cgroups
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cgroups
● Way to allocate resources to processes running on a system
● Hierarchical and can be dynamically added, changed and removed
● Made up of several subsystems also called Resource Controllers

● Part of RHEL 6 & 7 Kernel
● Upstream since 2.6.24
● You must install userspace tools

● Install libcgroup
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Resource Controllers
● blkio — this subsystem sets limits on input/output access to and from block devices 

such as physical drives (disk, solid state, USB, etc.). 
● cpu — this subsystem uses the scheduler to provide cgroup tasks access to the CPU. 
● cpuacct — this subsystem generates automatic reports on CPU resources used by 

tasks in a cgroup. 
● cpuset — this subsystem assigns individual CPUs (on a multicore system) and memory 

nodes to tasks in a cgroup. 
● devices — this subsystem allows or denies access to devices by tasks in a cgroup. 
● freezer — this subsystem suspends or resumes tasks in a cgroup. 
● memory — this subsystem sets limits on memory use by tasks in a cgroup, and 

generates automatic reports on memory resources used by those tasks. 
● net_cls — this subsystem tags network packets with a class identifier (classid) that 

allows the Linux traffic controller ( tc) to identify packets originating from a particular 
cgroup task. 

● net_prio — this subsystem provides a way to dynamically set the priority of network 
traffic per network interface. 

● ns — the namespace subsystem. 



Union (overlay) Filesystems
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Union Filesystems
● Stacked / Layered Storage
● Copy on write
● Many available underlying implementations

● Aufs
● OverlayFS
● btrfs
● LVM
● Device mapper



Container Security



6 MISCONCEPTIONS ABOUT CONTAINERS

CONTAINERS ARE NOT 
SECURE BY DEFAULT
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Container Security

New vulnerabilities are 
identified daily and 
containers become 

stale over time.

WHAT’S INSIDE 
CONTAINERS

Red Hat + Black Duck 
= secure, trusted 

model for validating 
container contents.

ISOLATION OF 
HOSTS

Host OS + SELinux 
maintained by trusted 
kernel engineers and 
frequently updated.

TRUST IS 
TEMPORAL

ARE SOURCES 
TRUSTED?

36% of Docker Hub 
official images contain 
high priority security 

vulnerabilities.*

*Source: Over 30% of Official Images in Docker Hub Contain High Priority Security Vulnerabilities, Jayanth Gummaraju, Tarun Desikan, 
and Yoshio Turner, BanyanOps, May 2015 (http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf)

http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf
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Container Isolation with SELinux
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Red Hat Container Technology
• Stock Red Hat Enterprise Linux (“RHEL”)

• Full OS image

• Docker packages added

• All combinations of use

• Red Hat Enterprise Linux Atomic Host (“Atomic”)
• Stripped down OS image

• Pre-installed docker packages

• Only for container deployment

• Limited additional packages

• Different upgrade / update process (no yum)

• Optimized settings for container deployment

• Separate subscription from RHEL subscription
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Atomic Formats

• Multiple environments available
• Cloud image (qcow2)
• RHEV (ova)
• Hyper-V (vhd)
• vSphere (ova)
• Installer (iso)
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Installing Atomic on kvm
• Create overlay of image

qemu-img create -f qcow2 -o 
backing_file=rhel-atomic-cloud-7.2-
12.x86_64.rhevm.qcow2  atomic-instance-
0.qcow2

• Set up VM
• Customize VM startup

• meta-data & user-data files
• Host IP addresses
• Login credentials

• Start VM
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Register & Update Atomic
• Register Atomic

subscription-manager register –username=myid
subscription-manager attach
subscription-manager list

• Upgrade Atomic
atomic host upgrade

• Atomic upgrade status
atomic host status

• Recover from failed upgrade
atomic host rollback
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Using Docker
• Getting help

docker --help

• Information on docker install

docker info

docker network ls
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Using Docker Images
• Download an image

docker pull rhel7:latest

• Modify Dockerfile
• Update MAINTAINER

• Build image
docker build -t webserver .

• Show images
docker images

• Remove an image
docker rmi myimage

• Show all images
docker images -a
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Using Containers
• Start a container

docker run -d -p 80:80 --name=myweb webserver

• Change content

• Start another container
docker run -d -p 80:80 --name=myweb webserver

• List containers
docker ps

• Stop container
docker stop myimage

• Restart container

docker restart myimage

• Remove container

docker rm myimage
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Reference Materials
• Atomic documentation

https://access.redhat.com/documentation/en/red-hat-enterprise-linu
x-atomic-host?version=7/

• Atomic Download
https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2
.2-2/x86_64/product-software

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host?version=7/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host?version=7/
https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-software
https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-software


THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews
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