
Introduction to Container
Technology

Patrick Ladd
Technical Account Manager
April 13, 2016

Container Technology

3

Containers

● "Linux Containers" is a Linux kernel feature to contain a group of processes in an
independent execution environment.

● Linux kernel provides an independent application execution environment for each
container including:
● Independent filesystem
● Independent network interface and IP address.
● Usage limit for memory and CPU time.

● Linux containers are realized with integrating many existing Linux features. There
are multiple container management tools such as lxctools, libvirt and docker.
They may use different parts of these features.

4

Container History

20
00

20
10

20
05

20
15

2000:
JAILS ADDED
TO FREEBSD

2006:
GENERIC PROCESS
CONTAINERS

2008:
KERNEL AND USER
NAMESPACES

2014:
GOOGLE
KUBERNETES

2008:
LINUX CONTAINER
PROJECT (LXC)

2015:
STANDARDS VIA OCI
AND CNCF

2013:
RED HAT
ENTERPRISE LINUX

2013:
DOTCLOUD
BECOMES DOCKER

2007:
GPC RENAMED
CONTROL GROUPS

2003:
SELINUX ADDED TO
LINUX MAINLINE

2015:
RHT CONTAINER
PLATFORMS

2015:
RHEL ATOMIC HOST

2001:
LINUX -VSERVER
PROJECT

2013:
DOT CLOUD PYCON
LIGHTNING TALK

2005:
FULL RELEASE OF
SOLARIS ZONES

CONTAINERS

VIRTUALIZATION

TRADITIONAL OS CONTAINERS

7

Underlying Technology

Enabling Technology in Linux has been present for many years
● Namespaces

● Process
● Network
● Filesystem
● User
● IPC
● UTS (UNIX Technology Services)

● cgroups - Control Groups
● Union (overlay) Filesystems

Namespaces

9

Original UNIX Process Tree
● First process is PID 1
● Process tree rooted at PID 1
● PIDs with appropriate privilege may

inspect or kill other processes in the
tree

Linux Namespaces
● Multiple, nested process trees
● Nested trees cannot see parent tree
● Process has multiple PIDs

● One for each namespace it is a
member of

Process Namespaces
1

2 3

4 5,1

6,2 7,3

8,4,1

10,6,39,5,2

10

Network Namespaces
Presents an entirely separate set of network
interfaces to each namespace
● All interfaces including loopback are

virtualized
● Ethernet bridges may be created

● ip link add name veth0 type
veth peer name veth1 netns
<pid>

● Routing process in global namespace to
route packets

Original Namespace:
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp4s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
 link/ether 00:24:8c:a1:ac:e7 brd ff:ff:ff:ff:ff:ff

New Namespace:
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

P
H
Y
S

I
N
T
F

Routing
Process

V
I
R
T

V
I
R
T

Global Namespace

Child net namespace

Child net namespace

11

Filesystem Namespaces
Clone / Replace list of mounted filesystems
● Similar to chroot
● Allows isolation of all mount points, not just

root
● Atrributes can be changed between

namespaces (read only, for instance)
● Used properly, avoids exposing anything

about underlying system

12

User Namespaces
Replace / Extend UID / GID
● Delete unneeded UID / GID from container
● Add / change UID / GID map inside

container
● Use: root privilege in container, user

privilege in base OS

13

IPC Namespaces
Similar to network namespaces
● Separate interprocess communications

resources
● Sys V IPC
● POSIX messaging

14

UTS Namespaces
UTS : UNIX Technology Services
● Change inside container:

● Hostname
● Domain

15

Feature availability

● Filesystem separation
● Hostname separation
● IPC separation
● User (UID/GID) separation
● Processtable separation
● Network separation
● Usage limit of CPU/Memory

● Mount namespace (kernel 2.4.19)
● UTS namespace (kernel 2.6.19)
● IPC namespace (kernel 2.6.19)

● User namespace (kernel 2.6.23 〜 kernel 3.8)
● PID namespace (kernel 2.6.24)
● Network Namespace (kernel 2.6.24)
● Control groups

16

Namespaces Summary
Isolation / Modification of Container processes from host
● PIDs
● Network
● Filesystems
● UID/GID
● IPC
● Hostname / Domain

See documentation on clone() system call for more complete details on functionality
(Warning: systems programmer jargon territory)

cgroups

18

cgroups
● Way to allocate resources to processes running on a system
● Hierarchical and can be dynamically added, changed and removed
● Made up of several subsystems also called Resource Controllers

● Part of RHEL 6 & 7 Kernel
● Upstream since 2.6.24
● You must install userspace tools

● Install libcgroup

19

20

21

Resource Controllers
● blkio — this subsystem sets limits on input/output access to and from block devices

such as physical drives (disk, solid state, USB, etc.).
● cpu — this subsystem uses the scheduler to provide cgroup tasks access to the CPU.
● cpuacct — this subsystem generates automatic reports on CPU resources used by

tasks in a cgroup.
● cpuset — this subsystem assigns individual CPUs (on a multicore system) and memory

nodes to tasks in a cgroup.
● devices — this subsystem allows or denies access to devices by tasks in a cgroup.
● freezer — this subsystem suspends or resumes tasks in a cgroup.
● memory — this subsystem sets limits on memory use by tasks in a cgroup, and

generates automatic reports on memory resources used by those tasks.
● net_cls — this subsystem tags network packets with a class identifier (classid) that

allows the Linux traffic controller (tc) to identify packets originating from a particular
cgroup task.

● net_prio — this subsystem provides a way to dynamically set the priority of network
traffic per network interface.

● ns — the namespace subsystem.

Union (overlay) Filesystems

23

Union Filesystems
● Stacked / Layered Storage
● Copy on write
● Many available underlying implementations

● Aufs
● OverlayFS
● btrfs
● LVM
● Device mapper

Container Security

6 MISCONCEPTIONS ABOUT CONTAINERS

CONTAINERS ARE NOT
SECURE BY DEFAULT

26

Container Security

New vulnerabilities are
identified daily and
containers become

stale over time.

WHAT’S INSIDE
CONTAINERS

Red Hat + Black Duck
= secure, trusted

model for validating
container contents.

ISOLATION OF
HOSTS

Host OS + SELinux
maintained by trusted
kernel engineers and
frequently updated.

TRUST IS
TEMPORAL

ARE SOURCES
TRUSTED?

36% of Docker Hub
official images contain
high priority security

vulnerabilities.*

*Source: Over 30% of Official Images in Docker Hub Contain High Priority Security Vulnerabilities, Jayanth Gummaraju, Tarun Desikan,
and Yoshio Turner, BanyanOps, May 2015 (http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf)

http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf

27

Container Isolation with SELinux

HOST OS

CONTAINER

OS

RUNTIME

APP

CONTAINER

OS

RUNTIME

APP

CONTAINER

OS

RUNTIME

APP

CONTAINER

OS

RUNTIME

APP

SHARED
SERVICE

SHARED
SERVICE

SHARED
SERVICE

SHARED
SERVICE

SELINUX

SELINUX

SELINUX

SELINUX

SELINUX

SELINUX

28

Red Hat Container Technology
• Stock Red Hat Enterprise Linux (“RHEL”)

• Full OS image

• Docker packages added

• All combinations of use

• Red Hat Enterprise Linux Atomic Host (“Atomic”)
• Stripped down OS image

• Pre-installed docker packages

• Only for container deployment

• Limited additional packages

• Different upgrade / update process (no yum)

• Optimized settings for container deployment

• Separate subscription from RHEL subscription

29

Atomic Formats

• Multiple environments available
• Cloud image (qcow2)
• RHEV (ova)
• Hyper-V (vhd)
• vSphere (ova)
• Installer (iso)

30

Installing Atomic on kvm
• Create overlay of image

qemu-img create -f qcow2 -o
backing_file=rhel-atomic-cloud-7.2-
12.x86_64.rhevm.qcow2 atomic-instance-
0.qcow2

• Set up VM
• Customize VM startup

• meta-data & user-data files
• Host IP addresses
• Login credentials

• Start VM

31

Register & Update Atomic
• Register Atomic

subscription-manager register –username=myid
subscription-manager attach
subscription-manager list

• Upgrade Atomic
atomic host upgrade

• Atomic upgrade status
atomic host status

• Recover from failed upgrade
atomic host rollback

32

Using Docker
• Getting help

docker --help

• Information on docker install

docker info

docker network ls

33

Using Docker Images
• Download an image

docker pull rhel7:latest

• Modify Dockerfile
• Update MAINTAINER

• Build image
docker build -t webserver .

• Show images
docker images

• Remove an image
docker rmi myimage

• Show all images
docker images -a

34

Using Containers
• Start a container

docker run -d -p 80:80 --name=myweb webserver

• Change content

• Start another container
docker run -d -p 80:80 --name=myweb webserver

• List containers
docker ps

• Stop container
docker stop myimage

• Restart container

docker restart myimage

• Remove container

docker rm myimage

35

Reference Materials
• Atomic documentation

https://access.redhat.com/documentation/en/red-hat-enterprise-linu
x-atomic-host?version=7/

• Atomic Download
https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2
.2-2/x86_64/product-software

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host?version=7/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host?version=7/
https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-software
https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-software

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

