

Ceph and ODF, and how they fit into your data storage needs

HVOpen October 2022

Patrick Ladd pladd@redhat.com https://people.redhat.com/pladd

Red Hat Storage Timeline

December 18, 2003	Sistina	GFS, LVM, DM	
September 4, 2008	Qumranet	KVM, RHEV, SPICE	
October 4, 2011	Gluster	GlusterFS	
April 30, 2014	Inktank	Ceph	
		Data deduplication and	
July 31, 2017	Permabit	compression	
November 28, 2018	NooBaa	Cloud storage technology	
January 2023	IBM	Ceph Transition to IBM	

Leading "ceph" related products within Red Hat portfolio

Ceph for OpenStack

#1in OpenStack storage

- Cinder block storage
- Nova ephemeral storage
- Glance image storage
- Swift object store
- Manila file storage
- Advanced integration
- Unified management
- Hyperconverged and Edge capabilities

Ceph storage cluster

Leading on-prem for S3 at scale

- Object storage
- Block storage
- File storage
- Leading the on-premise object market at 10-Petabyte+ scale
- Setting the standard for S3 compatibility outside of AWS

Ceph for OpenShift

Self-managing storage

- Powered by Red Hat Ceph Storage
- Automated by Rook and completed with Multicloud object gateway (MCG)
- Advanced integration and ease of use
- Adds support for stateful workloads to OpenShift

Ceph Community

Ceph project and community overview

- Ceph is 100% open source
 - Mostly LGPL2.1/LGPL3
- Scalable, multi-protocol storage platform
- We collaborate via
 - GitHub: https://github.com/ceph/ceph
 - https://tracker.ceph.com/
 - E-mail: dev@ceph.io
 - #ceph-devel on irc.oftc.net
- We meet a lot over video chat
 - See schedule at <u>http://ceph.io/contribute</u>

Ceph project and community overview

Vibrant developer community

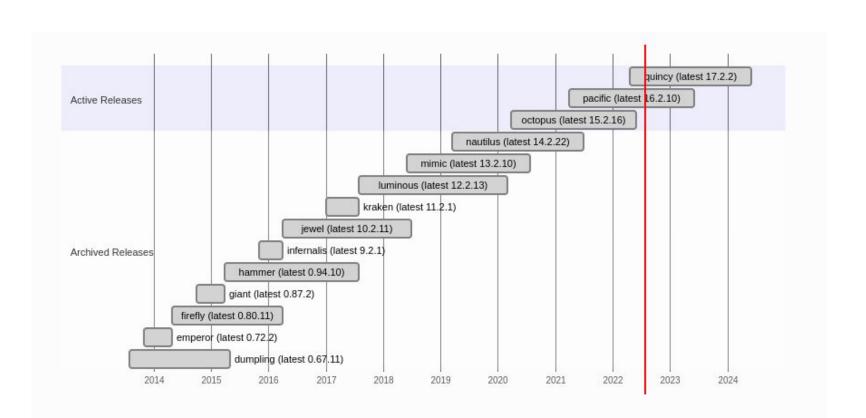
- 1000+ contributors
- 600K+ lines of code changed
- 17,000 code commits
- From multiple countries
 - USA, China, Germany, India

Multi vendor collaboration

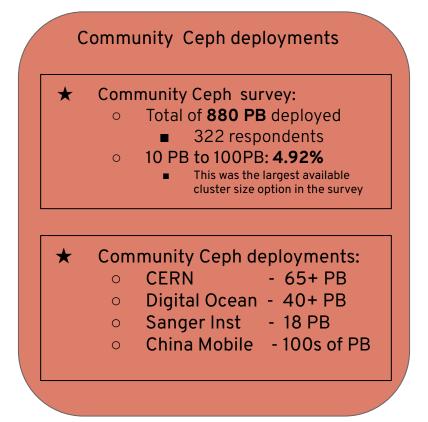
- 200+ organizations
 - 55% of code from Red Hat
- Variety of vendors
 - Hardware & Software vendors and Service providers

Broad solution Ecosystem

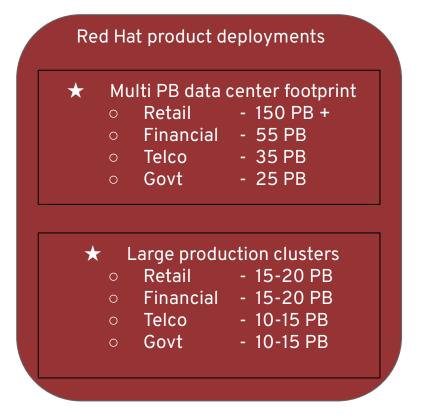
- Vendor published solutions \star across diverse workloads
 - <u>Intel</u>
 - Samsung 0
 - **Sandisk** 0



Proven Production deployments

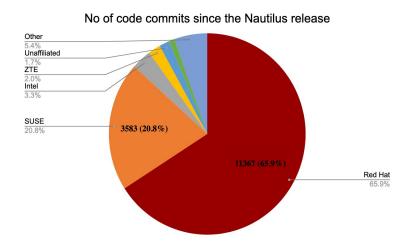

- \star Multi petabyte production deployments of Ceph
 - **CERN**
 - **NASA**
 - China Mobile
 - **Flipkart**
 - <u>Salesforce</u>

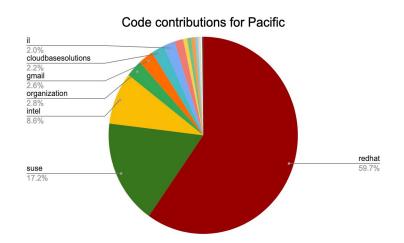
Ceph upstream community releases


Ceph community usage from telemetry

Upstream users, please, consider enabling it in your clusters via "ceph telemetry on"

Red Hat Ceph deployment metrics


Work with Red Hat consulting team to deploy optimally sized and configured clusters



Red Hat leadership in the Ceph community

Red Hat is the largest contributor to the Ceph codebase

So you wanna learn ceph

- Read the paper https://www.ssrc.ucsc.edu/papers/weil-osdi06.pdf
- Setup a cluster you can work with for an extended period of time
- bare-metal if you can (3 nodes minimum) ... virtual if you can't
- Least friction approach CentOS Stream + upstream ceph
- If you want to do it with RHEL + RHCS talk to a sales person

Red Hat Ceph Storage

- Software defined storage for on-premise cloud buildout
- Massively scalable to support tens of petabytes of data
- Delivers solid reliability and data durability
- Storage with industry-standard x86 servers
- Multi-site aware and disaster-recovery enabled

Flexibility to meet the demands of tomorrow

Delivers scalability

- Expand or shrink clusters as required
- Scale out within a cluster for capacity/speed

Increases reliability

- Fully distributed, no single point of failure
- Ensure data durability via replication or erasure coding
- Federate multiple clusters across sites with asynchronous replication and disaster recovery capabilities

Improves versatility

- A single cluster can support object, block, and file workloads
- Add or remove hardware while system is online

 even if it's under load
- Apply updates without interrupting service

Ceph architecture baseline

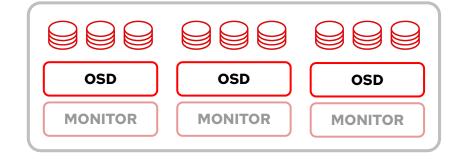
MONITOR PROCESS

Ceph uses monitors and object storage daemons

- Monitors maintain the Ceph cluster map
- Decisions are based on consensus: Paxos
- Monitors operate in a small and odd number
- Can be run as containerized processes

MONITOR

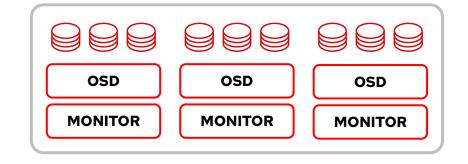
MONITOR


MONITOR

Ceph architecture baseline

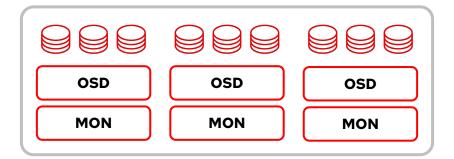
OSD PROCESS

Ceph monitors and object storage daemons

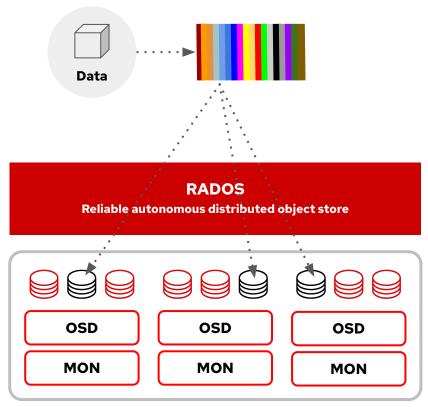

- OSD: Object storage daemon
- Provide direct data access
- Manage layout of data on media
- Peer and coordinate data distribution, integrity checking and recovery

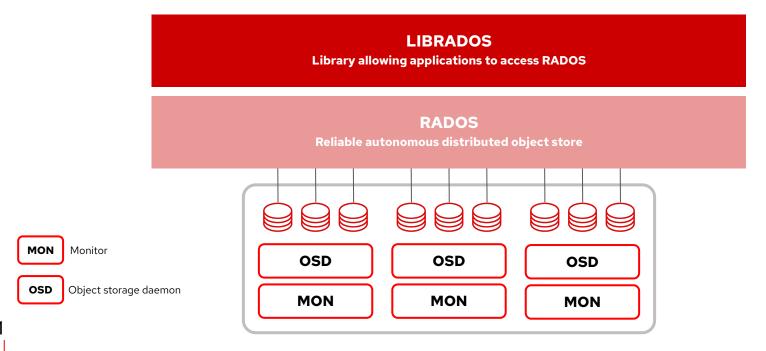
Ceph architecture baseline

A basic Ceph cluster setup is composed of monitors and object storage daemons (OSDs)

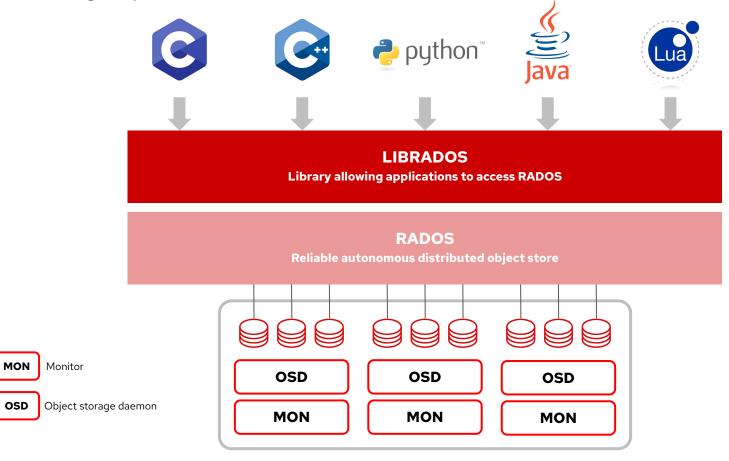

- Easy command-line interface (CLI) and user interface (UI) (5.1) setup
- A minimal setup contains 3 nodes
- OSDs can scale to 10000s in a cluster
- Tune for performance, capacity or cost

Ceph RADOS

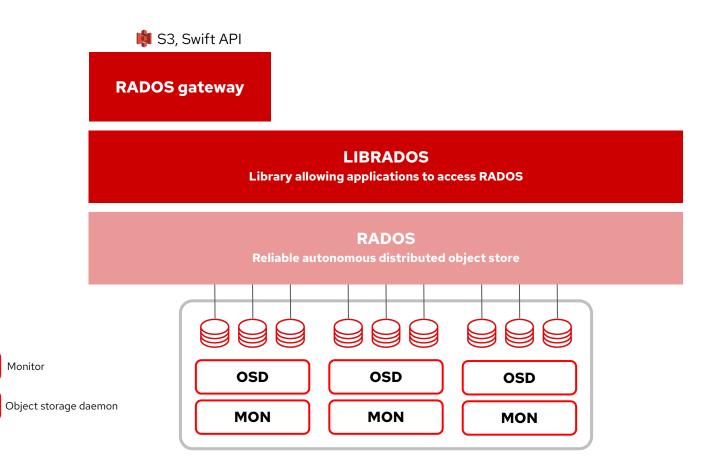


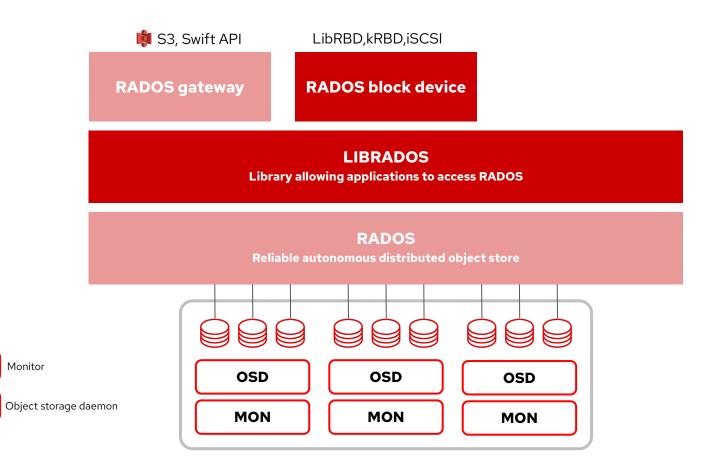

Ceph CRUSH algorithm Controlled Replication Under Scalable Hashing

- Pseudo-random placement algorithm
- Fast calculation, no lookup, no gateways
- Repeatable and deterministic
- Stable mapping
- Rule-based configuration
- Adjustable replication
- Weighting



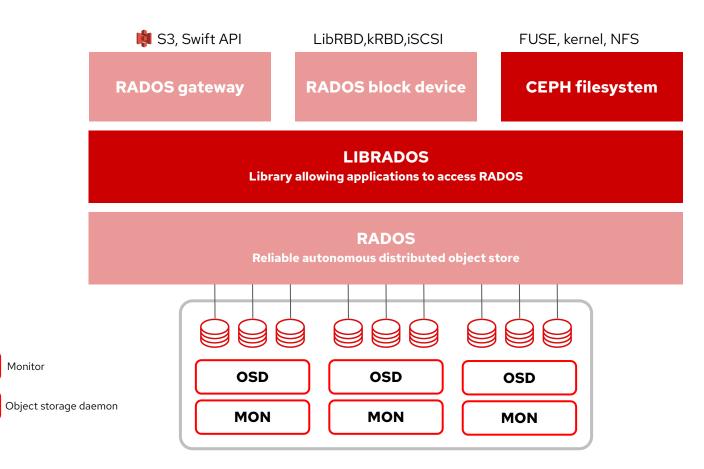
Ceph LIBRADOS


Accessing Ceph


Ceph architecture

Monitor

MON


Ceph architecture

MON

Monitor

Ceph architecture

MON

Monitor

Red Hat Ceph Storage 5

FUNCTIONALITY

New integrated control plane Stable management API Network File System (NFS) support

SECURITY

Write once, read many (WORM) (object lock)

Compliant with regulatory standards Key management integration

PERFORMANCE

80% increase in block performance for virtual machine and container hosting

EFFICIENCY

Reduced resource consumption for small file Complete set of data reduction options

Red Hat Ceph Storage 5

Red Hat Ceph Storage 5

FUNCTIONALITY

New manageability features

Integrated control plane
Stable management application programming
interface (API)
Object store daemon (OSD) replacement workflows
Object multi-site monitoring

New Ceph filesystem capabilities

NFS access option Erasure code option Snapshot based geo replication

New Rados block device capabilities

RADOS block device (RBD) snapshot based migration across clusters

Red Hat Ceph Storage 5

Red Hat Ceph Storage 5

PERFORMANCE

Improved performance

Dramatic boost for virtual machines:

Improved block performance by 80%

New object benchmark HDD test results:

> 80 GB/s object aggregate throughput Overhauled cache architecture

Improved scale

10+ billion objects in RADOS object gateway Continued object store scalability improvements

Better monitoring tools

Ceph file system 'top' joins the existing RADOS block device (RBD) top tool

Red Hat Ceph Storage 5

Red Hat Ceph Storage 5

SECURITY

Write once, read many (WORM)

S3 object lock enables WORM governance

Federal Information Processing Standard (FIPS)

FIPS 140-2 cryptographic libraries

Enhanced access control

Token based with identity federation (STS)

External authentication integration

Key management service integration

Granular object encryption

Per-object encryption, key management integration (SSE-KMS)

Red Hat Ceph Storage 5

Red Hat Ceph Storage 5

EFFICIENCY

Multi-site capabilities

RADOS object gateway across sites including hybrid cloud connectivity options

Resource consumption

Improved internal space utilization for small files

Improved reliability

Erasure coding recovery with "K" shards

Object offload to public cloud (5.1)

Using bucket policies and AWS

Future feature

Summary of what's new RHCS 5

Efficiency

- Full data reduction option range
- 16X better space use on HDD small file
- 4X better space use on SDD small file

Security

- Write once, read many (WORM) object lock application programming interface (API)
- FIPS 140-2 cryptography
- Interoperate with key management interoperability protocol (KMIP) key managers
- Messenger v. 2.1 backplane encryption

Performance

- Optimized Librados block device (LibRBD) data path: 80% faster
- Overhauled cache architecture
- 10+ billion objects in RADOS gateway (RGW)
- Ceph file system
 (CephFS) "Top" tool

Manageability

- New integrated control plane—Cephadm
- Integrated monitoring and management dashboard
- OSD replacement workflow (CLI and UI)
- RGW multisite monitoring

APIs and protocols

- Management API
- CephFS + network file system (NFS)
- CephFS geo-replication

Workload-based configurations

	Edge configuration	Capacity optimized (big data and Al/ML)	Performance I/O optimized (analytics/database)
Options	Base (10 TB) or Plus (20 TB)	Base (30 TB) or Plus (60 TB)	Base (15 TB) or Plus (30 TB)
Workloads or Services	Small footprint edge configurations	Big data workloads	Latency-sensitive workloads, such as transaction processing
Red Hat OpenShift Data Foundation	Attach to Red Hat OpenShift Container Platform cluster Bare metal: RS00421 or Core pair: MCT4051	Attach to Red Hat OpenShift Container Platform cluster Bare metal: RS00421 or Core pair: MCT4051	Attach to Red Hat OpenShift Container Platform cluster Bare metal: RS00421 or Core pair: MCT4051
Platform	2U1 node	2U1 node	2U1 node
СРИ	Base : 1x Intel® Xeon® Gold 5218R processor (16 cores) Plus : 2x Intel Xeon Gold 5218R processor (16 cores)	Base: 1x Intel® Xeon® Gold 6242R processor (20 cores) Plus: 2x Intel Xeon Gold 6242R processor (20 cores)	Base: 2x Intel Xeon Gold 6242R processor (20 cores) Plus: 2x Intel® Xeon® Gold 6248R processor (24 cores)
Memory	Base: 96 GB Plus: 192 GB	Base : 96 GB Plus : 192 GB	Base : 192 GB Plus: 384 GB
Data network	Base: 2x Intel® Ethernet Network Adapter X710-T2L (10 GbE)	Base: 2x Intel Ethernet Network Adapter XXV710-DA2 (25 GbE)	Base: 2x Intel Ethernet Network Adapter E810-CQDA2 (50 GbE)
	Plus: 2x Intel Ethernet Network Adapter X710-T2L (10 GbE)	Plus: 2x Intel Ethernet Network Adapter XXV710-DA2 (25 GbE)	Plus: 2x Intel Ethernet Network Adapter E810-CQDA2 (100 GbE)
Management network	1x Intel® Ethernet Connection X710-DA2 (10 GbE)	1x Intel Ethernet Connection X710-DA2 (10 GbE)	1x Intel Ethernet Connection X710-DA2 (10 GbE)
Storage cache	Base: None Plus: 1x Intel® Optane™ SSD DC P4800X (375 GB)	Base: 1x Intel Optane SSD DC P4800X (750 GB) Plus: 2x Intel Optane SSD DC P4800X (750 GB)	Base: 2x Intel Optane SSD DC P4800X (750 GB) Plus: 2x Intel Optane SSD DC P4800X (1.5 TB)
Storage media	Base: 6x Intel® SSD DC-S4510 (1.92 TB, 2.5" SATA, TLC) Plus: 6x Intel SSD DC-S4510 (3.84 TB, 2.5" SATA, TLC)	Base: 8x Intel SSD DC-S4510 (3.84 TB, 2.5" SATA, TLC) Plus: 16x Intel SSD DC-S4510 (3.84 TB, 2.5" SATA, TLC) or 8x Intel® SSD DC-S4510 (7.68 TB, 2.5" SATA, TLC)	Base: 8x Intel® SSD DC-P4610 (1.92 TB, 2.5" U.2 NVMe, TLC) Plus: 8x Intel SSD DC-P4610 (3.84 TB, 2.5" U.2 NVMe, TLC)

Subscription (SKU) options

Subscription model

Pricing is based on capacity

Capacity limit is raw physical capacity of disks

Red Hat's Certified Cloud and Service Partner program (CCSP)

Red Hat Ceph Storage is also available through the embedded and CCSP programs

Subscription lifecycle

Support model

24x7 support

Patches

Consulting services (option)

Base lifecycle

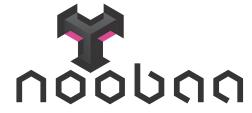
12 months \rightarrow bug fixes, security fixes, backports 24 months \rightarrow bug fixes, security fixes

Extended lifecycle (ELS) (option)

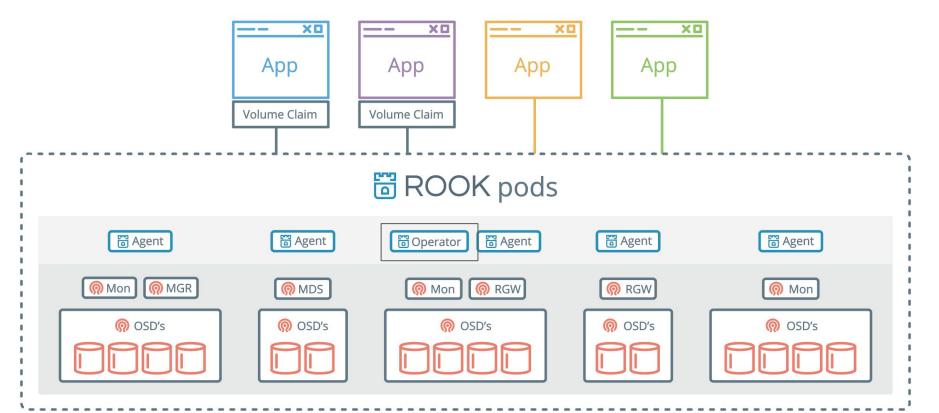
24 months → bug fixes, security fixes

OpenShift Data Foundation

aka ODF pka OCS apka CNS


```
:) ..... :(
```

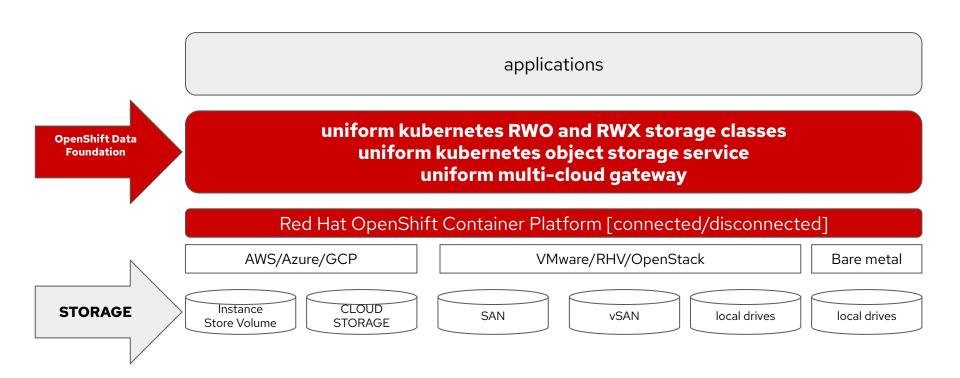

open source upstream communities


The benefits of Rook

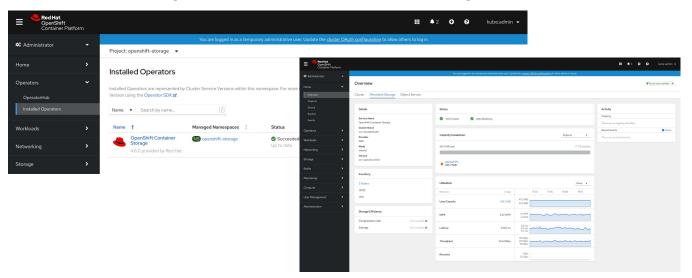
- High availability with ability to handle file,
 block and object storage
- Increased resiliency
- Scrubs for, and repairs, inconsistent objects ensuring data is protected and coherent
- Can be deployed anywhere ensuring a consistent storage platform across the hybrid cloud

Rook Architecture

Multi Cloud Object Gateway technology by



- ODF Multi Cloud Object Gateway powered by NooBaa
 - Noobaa provides a consistent S3 endpoint across different Multi Cloud Infrastructures : AWS, AZURE, GCP, BareMetal, VMware and OpenStack
- ODF MCG Functionality
 - Read/Write access across multiple clouds
- Virtualizes and abstracts any kind of existent storage resources
 - Shared, dedicated, Physical or Virtual, Private or Public
- Full control over data placement
 - Place data based on Security, Strategy and Cost Considerations
 - All within granularity of application


Red Hat OpenShift Data Foundation

consumes **storage** to provide **higher-level services**.

Focus on ease of use

- Simplified installation from the Operator Hub within OpenShift Console
- Minimize maintenance
- Integrated dashboard and configuration into OpenShift Console

Persistent Volume

Block

- Primary for DB and Transactional workloads
- Low latency
- Messaging

Provided by Rook-Ceph

Shared File System

- POSIX-compliant shared file system
- Interface for legacy workloads
- CI/CD Pipelines
- AI/ML Data Aggregation

Provided by Rook-Ceph

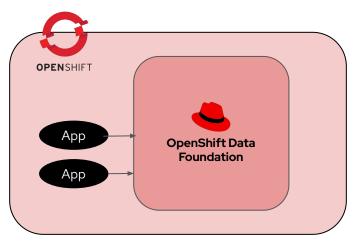
Object Service

- Media, AI/ML training data,

 Archiving, Backup, Health Records
- Great Bandwidth performance
- Object API (S3/Blob)

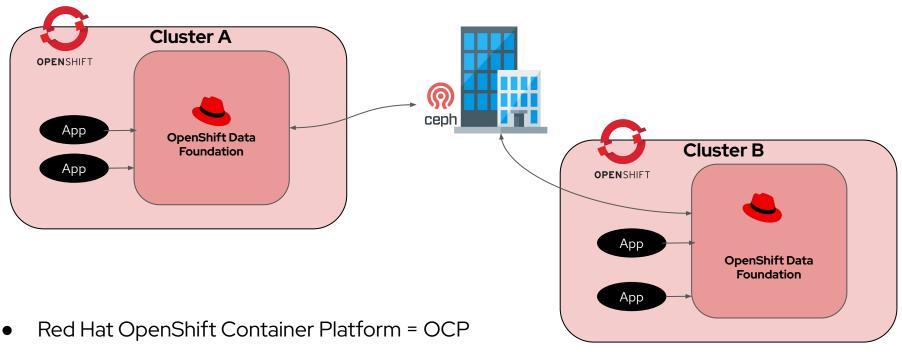
Provided by Multicloud Object

Gateway


Platforms

- Managed service on IBM ROKS
- Early Field Trial on ROSA and OpenShift Dedicated

Out of the box support	
Block, File, Object	
Platforms	
AWS/Azure	Google Cloud (Tech Preview)
ARO - Self managed OCS	IBM ROKS & Satellite - Managed OCS (GA)
RHV	OSP (Tech Preview)
Bare metal/IBM Z/Power	VMWare Thin/Thick IPI/UPI
Deployment modes	
Disconnected environment and Proxied environments	


ODF internal mode

- Red Hat OpenShift Container Platform = OCP
- Red Hat ODF Internal Mode One ODF install per single OCP
- Ceph components run internally to OpenShift Cluster as containers, using ODF operator to have an opinionated deployment

ODF external mode

- Red Hat ODF External Mode One ODF instance per single OCP)
- Red Hat Ceph Storage Cluster aka RHCS cluster
- Data actually stored in RHCS cluster

Supported Protocols with External Mode

Which storage protocols are supported?

Similar to OpenShift Data Foundation in internal mode equivalent

File storage

Block storage

Object storage

All Storage Modes & All Access Modes RWO

ROX

RWX

OpenShift Data Foundation - Essentials edition

Red Hat OpenShift Data Foundation Essentials

Contains all basic elements that applications need to address data needs

Basic storage classes

Kubernetes RWO, Kubernetes RWX and S3-compatible Object storage

Provides basic OpenShift cluster level encryption

Batteries are included

Red Hat OpenShift Data Foundation Essentials edition is included with Red Hat OpenShift Platform Plus—at no additional cost

OpenShift Data Foundation - Advanced edition

Red Hat OpenShift Data Foundation Advanced

Extends the essentials edition with additional capabilities

- Enhanced level of encryption at persistent volume level
- Shared mode—Share data across multiple Openshift clusters
- Mixed use—Workloads outside OpenShift accessing the data
- Regional and Metropolitan disaster recovery capabilities with Red Hat Advanced Cluster Management for Kubernetes and Red Hat OpenShift Data Foundation Advanced

Simple ODF demo

With Q and A

Further Q and A

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions.

Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- youtube.com/user/RedHatVideos
- facebook.com/redhatinc
- twitter.com/RedHat

