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Why Ansible?
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Why Ansible?

Simple
Be productive Quickly

● Human Readable
● No Coding Skills
● In Order Execution

Powerful
Orchestrate Entire Lifecycle
● Application Deployment
● Configuration Management
● Workflow Orchestration

Secure
More Efficient & More Secure

● Agentless
● Uses SSH & WinRM
● Less to Update or Exploit
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Use across all your environments

Why Ansible?
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Use across all your environments

Why Ansible?

● Operating systems: Red Hat Enterprise Linux®, Windows, Ubuntu, and more.
● Servers: HP, Dell, Cisco, and more. 
● Cloud: Amazon Web Services, Microsoft Azure, Google Cloud Platform, DigitalOcean, 

CloudStack, OpenStack®, Rackspace, Packet, and more.
● Infrastructure: Red Hat OpenShift®, VMware, NetApp, Kubernetes, Jenkins, JBoss®, 

Docker,  and more.
● Networks: Arista, Cisco, Juniper, F5, Palo Alto, and more.

● 2,832 Core Modules
● 20,916 Community Roles

https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://galaxy.ansible.com/search?deprecated=false
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Use Throughout Your Workflow

Why Ansible?

● Infrastructure Deployment.
● Code deployment. 
● Build automation.
● Artifact management.
● Certificate management.
● Service restarts.
● Decommissioning resources.
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IDC Case Study:
Save Time – Operate Efficiently – Respond Faster

Why Ansible?

● IDC Impact Study
● Managed service provider
● 5 Datacenters
● 1000+ employees
● Manages 1500+ systems

Source:
https://www.redhat.com/en/resources/total-economic-impact-ansible-spotlight
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IDC Case Study:
146% ROI – 3 month payback

Why Ansible?

Source:
https://www.redhat.com/en/resources/total-economic-impact-ansible-spotlight

Lead time reduced 66%
$1,321,364 savings over 3 years

Avoided appliance purchase
$389,707 cost avoidance

Automated reconfiguration
Reduced man hours by 94%

Automated security updates
Reduced man hours by 80%
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Ansible and Puppet

Why Ansible?

● Agent-less
● Push vs Pull
● YAML vs JSON
● Top to bottom ordering*

Source:
https://www.redhat.com/en/resources/total-economic-impact-ansible-spotlight
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Ansible Basics
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YAML – Yet Another Markup Language

Ansible Basics

● Simple, Human Readable
● Key/Value based
● Lists and Dictionaries

● Mandatory Indentation – 2 spaces
● File start ----
● File end ...
● Quoting: “” and ‘’

  # Me
  - me:
      name: Patrick Ladd
      employed: yes
      job: Technical Account Manager
      age: 49
      interests: |
        backpacking
        lego
      friends:
        - Joe
        - Bob
        - Ralph
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YAML – Lists & Dictionaries

Ansible Basics

● Lists
● Indented
● ‘-’ delimiter
● Short form: [ a, b ]

# List of favorite foods
foods:
  - bacon
  - pizza
  - steak

drinks: [ ‘soda’, ‘water’, ‘cider’ ]

# Dictionaries of book and movie
book:
  name: Ansible 101
  author: Foo Bar
  brief: Getting started with Ansible

Movie: { name: “The Matrix”, genre: “SciFi” }

● Dictionaries
● Indented
● Key: Value (space after ‘:’ reqired!)
● Short form: { k1: v1, k2: v2 }
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YAML – Booleans and Special Characters

Ansible Basics

● Boolean values

● When you don’t want the boolean value

● Watch out for special characters!

create_key: yes
needs_root: no
likes_vi: True
dislikes_emacs: TRUE
uses_cvs: false

non_boolean: "yes"
other_string: "False"

info: somebody said I should put a colon 
here: so I did

info: "somebody said I should put a colon 
here: so I did"
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YAML – New Lines

Ansible Basics

● Spanning Lines with newlines

● Spanning Lines with no newlines

include_newlines: |
            exactly as you see
            will appear these three
            lines of poetry

ignore_newlines: >
            this is really a
            single line of text
            despite appearances
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YAML – Getting Fancy

Ansible Basics

● Combine lists and dictionaries in any 

combination
● Escaping
● Line folding / extending

● Handy References:
● https://yaml.org/spec/1.2/spec.html
● https://docs.ansible.com/ansible/latest/referenc

e_appendices/YAMLSyntax.html
● https://yaml.org/refcard.html

# People
- foo:
    name: Foo Bar
    job: Awesome Administrator
    languages:
      - perl
      - python
    fun fact: |
      can see in the dark
- learn:
    name: Learn Moar
    job: Sr Awesome Administrator
    languages:
      - ansible
      - ruby
      - awk
    fun fact: >
      runs with
      scissors

https://yaml.org/spec/1.2/spec.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://yaml.org/refcard.html
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YAML – Check your work

Ansible Basics

● From the command line:
python -c 'import yaml, sys; yaml.safe_load(sys.stdin)' < my.yaml

● YamlLint: https://pypi.org/project/yamllint/
● Official checker for Ansible playbooks: ansible-playbook –-syntax-check

● VIM trick:
● Add this to $HOME/.vimrc

autocmd FileType yaml setlocal ai ts=2 sw=2 et

https://pypi.org/project/yamllint/
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Basic Architecture

Ansible Basics

● Control Node
● Managed Hosts
● Connection
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Inventory - Where to run?

Ansible Basics

● Defines all hosts that Ansible manages
● Static

● Provides basic lists and groupings for hosts
● Dynamic inventories

● Satellite
● Cloud Providers (OpenStack, AWS)
● LDAP
● CMDB
● http://docs.ansible.com/ansible/intro_dynamic_inventory.html 
● Many others (there are plugins)
● List them: ansible-doc -t inventory -l
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Ansible Inventories – Static INI

Ansible Basics

● INI-like text file

● Sectioned to define groups of hosts

● Groups of groups

[rhel]
rhel1.mynet.com
192.168.122.156
192.168.122.168

[fedora]
fedora.mynet.com

[windows]
win1.mynet.com

[linux:children]
rhel
fedora
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Ansible Inventories – Static INI

Ansible Basics

● Common Options

● Defining Ranges [start:end]

[master]
localhost ansible_connection=local

[rhel]
rhel1.mynet.com:1234 
ansible_connection=ssh ansible_user=foo
192.168.122.156
192.168.122.168

[moar-servers]
web[1:7].moar.com
db[01:07].moar.com
192.168.[4:7].[0:255]
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Authentication – Who are you?

Ansible Basics

● ssh used for most connections
● Best practice – use ssh keys
● Best practice – run with least privilege

● Use ansible_become if root is needed
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Modules – What to do?

Ansible Basics

● What allows us to perform actions on a host. They do the heavy lifting
● Thousands of built in modules
● The basics:

● setup – reports facts
● ping – checks connection
● command – run a command (Don’t use this until you look for appropriate modules!)

● Use ansible-doc to search for additional information such as details of a module

$ ansible-doc copy
> COPY    (/usr/lib/python2.7/site-packages/ansible/modules/files/copy.py)

        The ‘copy’ module copies a file from the local or remote
        machine to a location on the remote machine…
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Ad-Hoc Commands

Ansible Basics

● For quick one-offs and testing
● ansible -m module host

● For example:
● ansible -m setup thathostoverthere



24

Ansible Basics

Demo – Hosts & Ad-hoc commands

● Host/IP
● Group
● List
● Patterns
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Playbooks

Ansible Basics

● Written in YAML composed of one or more “plays”
● Each play contains a list of tasks
● Each task is something to check, modify or run
● Order and spaces matter!
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Playbooks - components

Ansible Basics

● Pieces of a playbook – a playbook can contain 1 or more plays
● Name attribute: “name: a descriptive label of the play”
● Hosts attribute: “hosts: pattern.hosts.com”

● As described in the Referencing Hosts section
● User attributes: i.e. if the default remote_user will not work we provide a suitable one 

here
● Privilege escalation attributes: if necessary defining become, become_method, 

become_user, etc
● Tasks attribute: → 
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Playbooks - Tasks

Ansible Basics

● Tasks Attribute

A list of dictionaries with key/value pairs

● One or multiple tasks

  tasks:
  - name: first task
    service: name=httpd enabled=true

  tasks:
  - name: first task
    service: name=httpd enabled=true
  - name: second task
    service: name=sshd enabled=true
  - name: third task
    service: name=bluetooth enabled=false
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Playbooks - Tasks

Ansible Basics

● This:

● Is equivalent to this:

(but this is cleaner)

  tasks:
  - name: first task
    service: name=httpd enabled=true

  tasks:
  - name: first task
    service:
      name: httpd
      enabled: true
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Ansible Basics

Demo - Playbooks

● Checking for syntax
● Doing a dry run
● Step-by-step run
● Run a playbook
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Getting Fancy
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Variables

Getting Fancy

● Variable names must start with a letter and only contain letters, numbers and 

underscores
● Defined in three scopes

● Global: Variables set via the command line or Ansible configuration file
● Play: Defined in the play
● Host: Defined on host groups and/or individual hosts by the inventory, fact gathering 

or task
● Variables with the same name- Higher level wins

● CLI > Playbook > Inventory
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Variables in Playbooks

Getting Fancy

● At the start of a play in vars block

● In a vars file in YAML format

● Called with {{ var }} syntax
● must be in quotes if it starts the line

- hosts: all
  vars:
    user: joe
    home: /home/joe

- hosts: all
  vars_files:
    - vars/users.yml

tasks:
  - name: Creates the user {{ user }}
    user:
      name: "{{ user }}"
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Variables on Hosts and Groups

Getting Fancy

● Individually from inventory

● Defined for all hosts in a group

[webservers]
localhost  ansible_connection=local
web1.foo.com
web2.foo.com:1234 ansible_connection=ssh 
ansible_user=foo

[eng]
sys1.foo.com
sys2.foo.com

[prod]
prod1.foo.com
prod2.foo.com

[eng:vars]
user=foo
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Variables – CLI

Getting Fancy

● Override from Command Line

● Referencing Arrays

(Dot notation can be a problem with 

modules)

$ ansible-playbook user.yml -e 
"user=mike"

users:
  joe:
    first_name: Joe
    last_name: Jones
    home_dir: /users/joe
  mike:
    first_name: Mike
    last_name: Cook
    home_dir: /users/mike

# Returns 'Joe'
users.joe.first_name
# Returns 'Joe'
users['joe']['first_name']
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Getting Fancy

Demo - Playbooks

● Simple variable usage and substitution
● Register to capture command output
● Debug to dump a value of a registered variable



36

Variables - Facts

Getting Fancy

● Facts: Variables that are automatically discovered
● Pulled by the setup modules
● List all the facts for a system (be warned this is a ton of data)

● Can be stored into variables for reuse or used directly
● Custom facts can be created

● Saved in /etc/ansible/facts.d
● Must have the .fact extension – myfacts.fact

● Gathering facts can be filtered

$ ansible host -m setup

$ ansible myhost1 -m setup -a “filter=ansible_user_id”



37

Flow Control - Conditionals

Getting Fancy

● Use conditionals to execute tasks or plays when conditions are met
● Use the when statement to evaluate prior to executing
● When must be placed outside of the module
● Does not have to be at the top of the list

- name: Create the DB admin
  user:
    name: db_admin
  when: inventory_hostname in groups[“databases”]



38

Flow Control – Multiple Conditions

Getting Fancy

ansible_kernel == 3.10.0-862.el7.x86_64 and inventory_hostname in 
groups[‘engineering’]

ansible_distribution == “RedHat” or ansible_distribution == “Fedora”

(ansible_distribution == “RedHat” and ansible_distribution_major_version == 7) or 
(ansible_distribution == “Fedora” and ansible_distribution_major_version == 27)

when:
- ansible_distribution == “CentOS”
- ansible_distribution_major_version == “6”
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Flow Control - Loops

Getting Fancy

● Simple loop: 

a list of items that is iterated over 

provided by loop

(this deprecates with_items)

yum:
 name: “{{ item }}”
 state: latest
loop:
  - postfix
  - dovecot

===============================

vars:
  mail_services:
    - postfix
    - dovecot
…
yum:
  name: “{{ item }}”
  state: latest
loop:   
  - “{{ mail_services }}”
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Flow Control – Loops with Conditionals

Getting Fancy

● Combine when and loop
● NOTE: The when statement is processed for each item

-name: install mariadb-server if enough space in root
 yum:
   name: mariadb-server
   state: latest
 loop: “{{ ansible_mounts }}”
 when: item.mount == “/” and item.size_available > 300000000
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Error Handling

Getting Fancy

● By default if a task fails a play is aborted
● Ignore a failed task with ignore_errors

yum:
  name: notapkg
  state: latest
ignore_errors: yes
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Error Handling - Overrides

Getting Fancy

● Override the failed state

● Override the changed state

shell:
  cmd: /usr/local/bin/create_users.sh
register: command_result
failed_when: "'Password missing' in 
command_result.stdout"

shell:
  cmd: /usr/local/bin/upgrade-database
  register: command_result
  changed_when: "'Success' in 
command_result.stdout"
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Error Handling – Debug Module

Getting Fancy

● Can provide the value for a playbook variable
● Provide some context with msg

● - debug: msg="The free memory for this system is {{ ansible_memfree_mb }}"
● Set verbosity (Ansible 2.1 and forward)

● - debug: var=output verbosity=2
● Will only show when -vv or above is set on run

$ ansible-playbook myplay.yml -vv
● Additional examples - http://docs.ansible.com/ansible/debug_module.html

http://docs.ansible.com/ansible/debug_module.html
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Logging

Getting Fancy

● By default Ansible does not log to a file
● Set log_path in the default section of ansible.cfg or set the $ANSIBLE_LOG_PATH 

environment variable
● Watch permissions

● If you want to log to /var/log you may need to run as root or modify the directory 

permissions
● Configure logrotate to help manage growing logs
● Beware leaked secrets in log files!
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Getting Fancier
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Batching

Getting Fancier

● Default is parallel execution

● Setting A batch size:

● Rolling batch size:

- name: test play
  hosts: webservers
  serial: 3

- name: test play
  hosts: webservers
  serial: 30%

- name: test play
  hosts: webservers
  serial: 
  - 1
  - 5
  - 10
  - “20%”
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Batching – Failure Percentage

Getting Fancier

● By default we run on all hosts until 

completion/failure

● Setting a Maximum failure percentage

● If we hit a 30% failure rate in a group 

we stop

- name: test play
  hosts: webservers
  max_fail_percentage: 30
  serial: 10
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Batching – Free Run

Getting Fancier

● Use the free strategy to run hosts out of 

lock-step

- hosts: eng
  strategy: free
  tasks:
   ...
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Secrets Management

Getting Fancier

● What is the Vault?
● Keep sensitive data encrypted

● What can the Vault store? 
● Most commonly structured data (i.e. YAML files)

● Now lots of vault plugins available to integrate other secrets management
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AWX / Ansible Tower
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Tower / AWX

AWX / Tower

● Use it for these environments
● Large
● Multi-user
● Enterprise
● Complex

● Features
● RBAC
● Scheduling
● GUI
● Integrations
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AWX / Tower

Demo

CONFIDENTIAL Designator

● Connecting repositories
● Adding credentials
● Job templates
● Running Jobs
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Tower / AWX

AWX / Tower

● Recording Available
● https://www.redhat.com/en/events/webinar/ansible-and-not-so-leaning-tower-aut

omation-integration-orchestration-cross-platform-environments

https://www.redhat.com/en/events/webinar/ansible-and-not-so-leaning-tower-automation-integration-orchestration-cross-platform-environments
https://www.redhat.com/en/events/webinar/ansible-and-not-so-leaning-tower-automation-integration-orchestration-cross-platform-environments


linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Thank you
Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 
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