
1

Exploring Ansible

Patrick Ladd
Technical Account Manager
pladd@redhat.com

2

Why Ansible?

3

Why Ansible?

Simple
Be productive Quickly

● Human Readable
● No Coding Skills
● In Order Execution

Powerful
Orchestrate Entire Lifecycle
● Application Deployment
● Configuration Management
● Workflow Orchestration

Secure
More Efficient & More Secure

● Agentless
● Uses SSH & WinRM
● Less to Update or Exploit

4

Use across all your environments

Why Ansible?

5

Use across all your environments

Why Ansible?

● Operating systems: Red Hat Enterprise Linux®, Windows, Ubuntu, and more.
● Servers: HP, Dell, Cisco, and more.
● Cloud: Amazon Web Services, Microsoft Azure, Google Cloud Platform, DigitalOcean,

CloudStack, OpenStack®, Rackspace, Packet, and more.
● Infrastructure: Red Hat OpenShift®, VMware, NetApp, Kubernetes, Jenkins, JBoss®,

Docker, and more.
● Networks: Arista, Cisco, Juniper, F5, Palo Alto, and more.

● 2,832 Core Modules
● 20,916 Community Roles

https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://galaxy.ansible.com/search?deprecated=false

6

Use Throughout Your Workflow

Why Ansible?

● Infrastructure Deployment.
● Code deployment.
● Build automation.
● Artifact management.
● Certificate management.
● Service restarts.
● Decommissioning resources.

7

IDC Case Study:
Save Time – Operate Efficiently – Respond Faster

Why Ansible?

● IDC Impact Study
● Managed service provider
● 5 Datacenters
● 1000+ employees
● Manages 1500+ systems

Source:
https://www.redhat.com/en/resources/total-economic-impact-ansible-spotlight

8

IDC Case Study:
146% ROI – 3 month payback

Why Ansible?

Source:
https://www.redhat.com/en/resources/total-economic-impact-ansible-spotlight

Lead time reduced 66%
$1,321,364 savings over 3 years

Avoided appliance purchase
$389,707 cost avoidance

Automated reconfiguration
Reduced man hours by 94%

Automated security updates
Reduced man hours by 80%

9

Ansible and Puppet

Why Ansible?

● Agent-less
● Push vs Pull
● YAML vs JSON
● Top to bottom ordering*

Source:
https://www.redhat.com/en/resources/total-economic-impact-ansible-spotlight

10

Ansible Basics

11

YAML – Yet Another Markup Language

Ansible Basics

● Simple, Human Readable
● Key/Value based
● Lists and Dictionaries

● Mandatory Indentation – 2 spaces
● File start ----
● File end ...
● Quoting: “” and ‘’

 # Me
 - me:
 name: Patrick Ladd
 employed: yes
 job: Technical Account Manager
 age: 49
 interests: |
 backpacking
 lego
 friends:
 - Joe
 - Bob
 - Ralph

12

YAML – Lists & Dictionaries

Ansible Basics

● Lists
● Indented
● ‘-’ delimiter
● Short form: [a, b]

List of favorite foods
foods:
 - bacon
 - pizza
 - steak

drinks: [‘soda’, ‘water’, ‘cider’]

Dictionaries of book and movie
book:
 name: Ansible 101
 author: Foo Bar
 brief: Getting started with Ansible

Movie: { name: “The Matrix”, genre: “SciFi” }

● Dictionaries
● Indented
● Key: Value (space after ‘:’ reqired!)
● Short form: { k1: v1, k2: v2 }

13

YAML – Booleans and Special Characters

Ansible Basics

● Boolean values

● When you don’t want the boolean value

● Watch out for special characters!

create_key: yes
needs_root: no
likes_vi: True
dislikes_emacs: TRUE
uses_cvs: false

non_boolean: "yes"
other_string: "False"

info: somebody said I should put a colon
here: so I did

info: "somebody said I should put a colon
here: so I did"

14

YAML – New Lines

Ansible Basics

● Spanning Lines with newlines

● Spanning Lines with no newlines

include_newlines: |
 exactly as you see
 will appear these three
 lines of poetry

ignore_newlines: >
 this is really a
 single line of text
 despite appearances

15

YAML – Getting Fancy

Ansible Basics

● Combine lists and dictionaries in any

combination
● Escaping
● Line folding / extending

● Handy References:
● https://yaml.org/spec/1.2/spec.html
● https://docs.ansible.com/ansible/latest/referenc

e_appendices/YAMLSyntax.html
● https://yaml.org/refcard.html

People
- foo:
 name: Foo Bar
 job: Awesome Administrator
 languages:
 - perl
 - python
 fun fact: |
 can see in the dark
- learn:
 name: Learn Moar
 job: Sr Awesome Administrator
 languages:
 - ansible
 - ruby
 - awk
 fun fact: >
 runs with
 scissors

https://yaml.org/spec/1.2/spec.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://yaml.org/refcard.html

16

YAML – Check your work

Ansible Basics

● From the command line:
python -c 'import yaml, sys; yaml.safe_load(sys.stdin)' < my.yaml

● YamlLint: https://pypi.org/project/yamllint/
● Official checker for Ansible playbooks: ansible-playbook –-syntax-check

● VIM trick:
● Add this to $HOME/.vimrc

autocmd FileType yaml setlocal ai ts=2 sw=2 et

https://pypi.org/project/yamllint/

17

Basic Architecture

Ansible Basics

● Control Node
● Managed Hosts
● Connection

18

Inventory - Where to run?

Ansible Basics

● Defines all hosts that Ansible manages
● Static

● Provides basic lists and groupings for hosts
● Dynamic inventories

● Satellite
● Cloud Providers (OpenStack, AWS)
● LDAP
● CMDB
● http://docs.ansible.com/ansible/intro_dynamic_inventory.html
● Many others (there are plugins)
● List them: ansible-doc -t inventory -l

19

Ansible Inventories – Static INI

Ansible Basics

● INI-like text file

● Sectioned to define groups of hosts

● Groups of groups

[rhel]
rhel1.mynet.com
192.168.122.156
192.168.122.168

[fedora]
fedora.mynet.com

[windows]
win1.mynet.com

[linux:children]
rhel
fedora

20

Ansible Inventories – Static INI

Ansible Basics

● Common Options

● Defining Ranges [start:end]

[master]
localhost ansible_connection=local

[rhel]
rhel1.mynet.com:1234
ansible_connection=ssh ansible_user=foo
192.168.122.156
192.168.122.168

[moar-servers]
web[1:7].moar.com
db[01:07].moar.com
192.168.[4:7].[0:255]

21

Authentication – Who are you?

Ansible Basics

● ssh used for most connections
● Best practice – use ssh keys
● Best practice – run with least privilege

● Use ansible_become if root is needed

22

Modules – What to do?

Ansible Basics

● What allows us to perform actions on a host. They do the heavy lifting
● Thousands of built in modules
● The basics:

● setup – reports facts
● ping – checks connection
● command – run a command (Don’t use this until you look for appropriate modules!)

● Use ansible-doc to search for additional information such as details of a module

$ ansible-doc copy
> COPY (/usr/lib/python2.7/site-packages/ansible/modules/files/copy.py)

 The ‘copy’ module copies a file from the local or remote
 machine to a location on the remote machine…

23

Ad-Hoc Commands

Ansible Basics

● For quick one-offs and testing
● ansible -m module host

● For example:
● ansible -m setup thathostoverthere

24

Ansible Basics

Demo – Hosts & Ad-hoc commands

● Host/IP
● Group
● List
● Patterns

25

Playbooks

Ansible Basics

● Written in YAML composed of one or more “plays”
● Each play contains a list of tasks
● Each task is something to check, modify or run
● Order and spaces matter!

26

Playbooks - components

Ansible Basics

● Pieces of a playbook – a playbook can contain 1 or more plays
● Name attribute: “name: a descriptive label of the play”
● Hosts attribute: “hosts: pattern.hosts.com”

● As described in the Referencing Hosts section
● User attributes: i.e. if the default remote_user will not work we provide a suitable one

here
● Privilege escalation attributes: if necessary defining become, become_method,

become_user, etc
● Tasks attribute: →

27

Playbooks - Tasks

Ansible Basics

● Tasks Attribute

A list of dictionaries with key/value pairs

● One or multiple tasks

 tasks:
 - name: first task
 service: name=httpd enabled=true

 tasks:
 - name: first task
 service: name=httpd enabled=true
 - name: second task
 service: name=sshd enabled=true
 - name: third task
 service: name=bluetooth enabled=false

28

Playbooks - Tasks

Ansible Basics

● This:

● Is equivalent to this:

(but this is cleaner)

 tasks:
 - name: first task
 service: name=httpd enabled=true

 tasks:
 - name: first task
 service:
 name: httpd
 enabled: true

29

Ansible Basics

Demo - Playbooks

● Checking for syntax
● Doing a dry run
● Step-by-step run
● Run a playbook

30

Getting Fancy

31

Variables

Getting Fancy

● Variable names must start with a letter and only contain letters, numbers and

underscores
● Defined in three scopes

● Global: Variables set via the command line or Ansible configuration file
● Play: Defined in the play
● Host: Defined on host groups and/or individual hosts by the inventory, fact gathering

or task
● Variables with the same name- Higher level wins

● CLI > Playbook > Inventory

32

Variables in Playbooks

Getting Fancy

● At the start of a play in vars block

● In a vars file in YAML format

● Called with {{ var }} syntax
● must be in quotes if it starts the line

- hosts: all
 vars:
 user: joe
 home: /home/joe

- hosts: all
 vars_files:
 - vars/users.yml

tasks:
 - name: Creates the user {{ user }}
 user:
 name: "{{ user }}"

33

Variables on Hosts and Groups

Getting Fancy

● Individually from inventory

● Defined for all hosts in a group

[webservers]
localhost ansible_connection=local
web1.foo.com
web2.foo.com:1234 ansible_connection=ssh
ansible_user=foo

[eng]
sys1.foo.com
sys2.foo.com

[prod]
prod1.foo.com
prod2.foo.com

[eng:vars]
user=foo

34

Variables – CLI

Getting Fancy

● Override from Command Line

● Referencing Arrays

(Dot notation can be a problem with

modules)

$ ansible-playbook user.yml -e
"user=mike"

users:
 joe:
 first_name: Joe
 last_name: Jones
 home_dir: /users/joe
 mike:
 first_name: Mike
 last_name: Cook
 home_dir: /users/mike

Returns 'Joe'
users.joe.first_name
Returns 'Joe'
users['joe']['first_name']

35

Getting Fancy

Demo - Playbooks

● Simple variable usage and substitution
● Register to capture command output
● Debug to dump a value of a registered variable

36

Variables - Facts

Getting Fancy

● Facts: Variables that are automatically discovered
● Pulled by the setup modules
● List all the facts for a system (be warned this is a ton of data)

● Can be stored into variables for reuse or used directly
● Custom facts can be created

● Saved in /etc/ansible/facts.d
● Must have the .fact extension – myfacts.fact

● Gathering facts can be filtered

$ ansible host -m setup

$ ansible myhost1 -m setup -a “filter=ansible_user_id”

37

Flow Control - Conditionals

Getting Fancy

● Use conditionals to execute tasks or plays when conditions are met
● Use the when statement to evaluate prior to executing
● When must be placed outside of the module
● Does not have to be at the top of the list

- name: Create the DB admin
 user:
 name: db_admin
 when: inventory_hostname in groups[“databases”]

38

Flow Control – Multiple Conditions

Getting Fancy

ansible_kernel == 3.10.0-862.el7.x86_64 and inventory_hostname in
groups[‘engineering’]

ansible_distribution == “RedHat” or ansible_distribution == “Fedora”

(ansible_distribution == “RedHat” and ansible_distribution_major_version == 7) or
(ansible_distribution == “Fedora” and ansible_distribution_major_version == 27)

when:
- ansible_distribution == “CentOS”
- ansible_distribution_major_version == “6”

39

Flow Control - Loops

Getting Fancy

● Simple loop:

a list of items that is iterated over

provided by loop

(this deprecates with_items)

yum:
 name: “{{ item }}”
 state: latest
loop:
 - postfix
 - dovecot

===============================

vars:
 mail_services:
 - postfix
 - dovecot
…
yum:
 name: “{{ item }}”
 state: latest
loop:
 - “{{ mail_services }}”

40

Flow Control – Loops with Conditionals

Getting Fancy

● Combine when and loop
● NOTE: The when statement is processed for each item

-name: install mariadb-server if enough space in root
 yum:
 name: mariadb-server
 state: latest
 loop: “{{ ansible_mounts }}”
 when: item.mount == “/” and item.size_available > 300000000

41

Error Handling

Getting Fancy

● By default if a task fails a play is aborted
● Ignore a failed task with ignore_errors

yum:
 name: notapkg
 state: latest
ignore_errors: yes

42

Error Handling - Overrides

Getting Fancy

● Override the failed state

● Override the changed state

shell:
 cmd: /usr/local/bin/create_users.sh
register: command_result
failed_when: "'Password missing' in
command_result.stdout"

shell:
 cmd: /usr/local/bin/upgrade-database
 register: command_result
 changed_when: "'Success' in
command_result.stdout"

43

Error Handling – Debug Module

Getting Fancy

● Can provide the value for a playbook variable
● Provide some context with msg

● - debug: msg="The free memory for this system is {{ ansible_memfree_mb }}"
● Set verbosity (Ansible 2.1 and forward)

● - debug: var=output verbosity=2
● Will only show when -vv or above is set on run

$ ansible-playbook myplay.yml -vv
● Additional examples - http://docs.ansible.com/ansible/debug_module.html

http://docs.ansible.com/ansible/debug_module.html

44

Logging

Getting Fancy

● By default Ansible does not log to a file
● Set log_path in the default section of ansible.cfg or set the $ANSIBLE_LOG_PATH

environment variable
● Watch permissions

● If you want to log to /var/log you may need to run as root or modify the directory

permissions
● Configure logrotate to help manage growing logs
● Beware leaked secrets in log files!

45

Getting Fancier

46

Batching

Getting Fancier

● Default is parallel execution

● Setting A batch size:

● Rolling batch size:

- name: test play
 hosts: webservers
 serial: 3

- name: test play
 hosts: webservers
 serial: 30%

- name: test play
 hosts: webservers
 serial:
 - 1
 - 5
 - 10
 - “20%”

47

Batching – Failure Percentage

Getting Fancier

● By default we run on all hosts until

completion/failure

● Setting a Maximum failure percentage

● If we hit a 30% failure rate in a group

we stop

- name: test play
 hosts: webservers
 max_fail_percentage: 30
 serial: 10

48

Batching – Free Run

Getting Fancier

● Use the free strategy to run hosts out of

lock-step

- hosts: eng
 strategy: free
 tasks:
 ...

49

Secrets Management

Getting Fancier

● What is the Vault?
● Keep sensitive data encrypted

● What can the Vault store?
● Most commonly structured data (i.e. YAML files)

● Now lots of vault plugins available to integrate other secrets management

50

AWX / Ansible Tower

51

Tower / AWX

AWX / Tower

● Use it for these environments
● Large
● Multi-user
● Enterprise
● Complex

● Features
● RBAC
● Scheduling
● GUI
● Integrations

52

AWX / Tower

Demo

CONFIDENTIAL Designator

● Connecting repositories
● Adding credentials
● Job templates
● Running Jobs

53

Tower / AWX

AWX / Tower

● Recording Available
● https://www.redhat.com/en/events/webinar/ansible-and-not-so-leaning-tower-aut

omation-integration-orchestration-cross-platform-environments

https://www.redhat.com/en/events/webinar/ansible-and-not-so-leaning-tower-automation-integration-orchestration-cross-platform-environments
https://www.redhat.com/en/events/webinar/ansible-and-not-so-leaning-tower-automation-integration-orchestration-cross-platform-environments

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

54

Thank you
Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

