
The Future of rendering in GNOME

Owen Taylor
otaylor@redhat.com

GUADEC 5
Kristiansand, Norway

June 28-30, 2004

Rendering

Outline

● Current issues
● A new rendering system
● Text
● Alpha Channels
● Printing
● Theming
● Animation

Trends in user interface

● Movement away from strict overlapping windows
– Popups
– Alpha transparency

● Proritization of information
– Computer is actively seeking information

● Explanation
– Computer is acting on behalf of user

Diverse Rendering

GDK

Core X

GDK

Xft

Pango

GDK

RENDER

Goal

GDK

Mystery Guest

GDK

Mystery Guest

Pango

GDK

Mystery Guest

Diverse Interfaces

Application

GDK gnome-print GnomeCanvas

libartCore X RENDER PostScript PDF

Goal

Application

GtkCanvas

Mystery Guest

PostScript PDFRENDER OpenGL

Better Rendering

● GDK
– 1987-style rendering + antialiased text, images

● gnome-print, libart
– alpha-compositing, antialiasing

● Add gradients
● Add different compositing modes
● Hardware acceleration

– Fast drawing needed for good animation

Cairo

● Mostly designed by Carl Worth
● Design goals:

– Easy to use
– Rendering model similar to PDF-1.4: alpha-

compositing, layers, patterns, gradients,
– Multiple backends

● Postscript-like programming interface

Cairo Example

● Drawing a triangle
void draw_triangle (cairo_t *cr)

{

 cairo_set_rgb_color (cr, 1.0, 0.0, 0.0);

 cairo_move_to (cr, 50, 0);

 cairo_line_to (cr, 100, 87);

 cairo_line_to (cr, 0, 87);

 cairo_close_path (cr);

 cairo_fill (cr);

}

Cairo backends

● Local images
● X RENDER extension
● OpenGL (HW accelerated)
● Postscript

– Just creates big bitmaps currently
– Needs to be redone to generate text, paths, etc,

where possible

Cairo Layer Modes

OUT_REVERSE

ADD

OVER

GTK+ integration

● Xlib wrapped by GTK+
void XDrawPoint (Display *display, Drawable d, GC gc,

 int x, int y);

void gdk_draw_point (GdkDrawable *drawable, GdkGC *gc,

 int x, int y);

– Hide hard-to-use API
– Provide cross-platform abstraction

● Not needed for Cairo
– Application uses Cairo directly

Raw GTK+ integration

void

my_widget_expose (GtkWidget *widget,

 GdkEventExpose *event)

{

 cairo_t *cr = cairo_create ();

 gdk_drawable_update_cairo (event->window, cr);

 cairo_set_rgb_color (cr, 1.0, 1.0, 0);

 cairo_rectangle (widget->allocation.x,

 widget->allocation.y,

 widget->allocation.width,

 widget->allocation.height);

 cairo_fill (cr);

 cairo_destroy (cr);

}

Better GTK+ integration

void

my_widget_paint (GtkWidget *widget,

 GdkEventExpose *event,

 cairo_t *cr)

{

 cairo_set_rgb_color (cr, 1.0, 1.0, 0);

 cairo_rectangle (widget->allocation.x,

 widget->allocation.y,

 widget->allocation.width,

 widget->allocation.height);

 cairo_fill (cr);

}

Text Drawing

● Cairo - “ Toy API”
cairo_show_text (cr, "Hello Word");

● GTK+ apps use Pango instead
PangoLayout *layout = pango_cairo_create_layout (cr);

pango_layout_set_text (layout, "Hello world");

pango_cairo_show_layout (cr);

g_object_unref (layout);

● Full capabilities of Pango
– internationalization
– styled text
– typographic features

Transforms

● Layout done in user coordinates
y

x

Device Coordinates

y

x

User Coordinates

Transform

Hinting

● Layout dependent on transform

Linearly Scaled Fit to Pixel Grid

Text Details

● PangoContext independent of cairo_t
font_map = pango_cairo_get_default_font_map ();

context = pango_cairo_font_map_create_context (font_map);

● Need to copy transformation to PangoContext
before rendering
pango_cairo_context_update (context, cr);

● Layout done for particular transformation
layout = pango_layout_new (context);

pango_layout_set_text (layout, “ Hello World” , -1);

pango_cairo_show_layout (layout);

Alpha channels

● COMPOSITE extension
– replaces fixed window handling with “ composite

manager”
– Uses RENDER, OpenGL, etc to draw windows

● Adds visual with an alpha channel
– Need corresponding GDK extensions
GdkVisual *gdk_screen_get_rgba_visual (GdkScreen *screen);

GdkColormap *gdk_screen_get_rgb_colormap (GdkScreen *screen);

void gdk_window_set_rgba_background (GdkWindow *window,

 GdkColor *color,

 guint16 alpha);

Printing

● Cairo provides backends
● Still need

– Print selection, page setup dialogs
– Way to get information about selected printer (Page

Size, Color vs. Monochrome)
– Create Cairo context

● Currently: libgnomeprint, libgnomeprintui
● Belongs in GTK+

– ~15,000 lines of code
– Cross-platform abstraction

GTK+ Printing API

● GtkPrintChooser (...Dialog, ...Widget)
● GtkPrintJob object

gtk_print_job_get_page_size (job, &width, &height);

cairo_t *cr = gtk_print_job_get_cairo (job);

Theme System

● Needs to be specific to GTK+
– Themes precisely customize particular widgets
– Add new widget types to GTK+

● Needs to be general
– Platform-native theming (GTK-WIMP)
– Use GTK+ theme system to render other widget sets

(OpenOffice, Mozilla)
● Themes have to handle custom widgets

– Application specific widgets
– Add-on libraries (libgnomeui, libegg, etc.)

Current Theme System

GtkHScale

style "metal-scale"
{
 GtkRange::slider_width = 15

 engine "metal" {}
}

class “ GtkScale” “ metal-scale”

libmetal.so

draw_box()
detail="trough"

draw_slider()
detail="hscale"

gtkrc file

Current Theme System

void gtk_paint_box (GtkStyle *style,

 GdkWindow *window,
 GtkStateType state_type,
 GtkShadowType shadow_type,
 GdkRectangle *area,
 GtkWidget *widget,
 const gchar *detail,
 gint x,
 gint y,
 gint width,
 gint height);

● Implementing generic functions give “ minimal
rendering”

● Can special case based on widget pointer, detail
string

Theme System Problems

● No specification of detail strings
● Most themes reference widget pointers

– problem for OpenOffice, Mozilla
● Styles bound to widget classes

– Can't create widgets that theme like, e.g, GtkEntry
● No concept of layout

– OpenOffice, Mozilla need to copy lots of code from
GTK+ internals

New theme system

● Multi-layered
– Top layer represents widgets, has idea of layout
– Bottom layer represents boxes, arrows, etc.

● Declarative
– config files not code

● Careful specification
– Multiple producers, multiple consumers

● Standard file formats
– XML, CSS(?)

Why animate

● Improve “ explanation” to user of what is going on
● Make desktop more physical
● Generally want to animate:

– Changes that occur away from the point of interaction
– Changes that the user doesn't expect

● Timing tricky
– Too fast: don't see
– Too slow: user needs to wait

Animation examples

● Current:
– Expanders turning
– Buttons activated through key press
– Toolbar editing

● Future
– Expanders opening
– Smooth scrolling
– GtkFileChooser pathbar
– Desensitization

Animation additions

● Way of timing animations
– Application creates GdkAnimation object
– Application draws first frame
– GdkAnimation tracks how progress on X server
– Application receives "update" signals with new

percentage when time for next frame
● Intermediate states for theme drawing?

– E.g., partially desensitized

Conclusion

● When? GTK+-2.8 (mid-2005)
● More information:

– These slides: http://people.redhat.com/guadec5/
– Cairo: http://www.cairographics.org

Discussion topics (Cairo)

● Comparison with PDF/SVG
● Comparison with Avalon (Longhorn drawing)
● 3D integration
● “ Pixel shader” type capabilities; expose

hardware programmability

Discussion topics (GTK+)

● Usage of SVG in GTK+
● Bevel-explosion and related problems with

composite widgets (E.g., GtkScrolledWindow)
● Resolution independence

– Scaling windows on the fly
– Padding in non-pixel units

● Changing GTK+ widget rendering to be more
retained-mode

