\documentclass{article} \begin{document} \title{Some image transform math} \author{Owen Taylor} \date{18 February 2003} \maketitle \section{Basics} The transform process is composed of three steps; first we reconstruct a continuous image from the source data \(A_{i,j}\): \[a(u,v) = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}F\left( {u - i \atop v - j} \right) \] Then we transform from destination coordinates to source coordinates: \[b(x,y) = a\left(u(x,y) \atop v(x,y)\right) = a\left(t_{00}x + t_{01}y + t_{02} \atop t_{10}x + t_{11}y + t_{12} \right)\] Finally, we resample using a sampling function \(G\): \[B_{x_0,y_0} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} b(x,y)G\left( {x - x_0 \atop y - y_0} \right) dxdy\] Putting all of these together: \[B_{x_0,y_0} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j} F\left( {u(x,y) - i \atop v(x,y) - j} \right) G\left( {x - x_0 \atop y - y_0} \right) dxdy\] We can reverse the order of the integrals and the sums: \[B_{x_0,y_0} = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j} \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F\left( {u(x,y) - i \atop v(x,y) - j} \right) G\left( {x - x_0 \atop y - y_0} \right) dxdy\] Which shows that the destination pixel values are a linear combination of the source pixel values. But the coefficents depend on \(x_0\) and \(y_0\). To simplify this a bit, define: \[i_0 = \lfloor u(x_0,y_0) \rfloor = \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \] \[j_0 = \lfloor v(x_0,y_0) \rfloor = \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \] \[\Delta_u = u(x_0,y_0) - i_0 = t_{00}x_0 + t_{01}y_0 + t_{02} - \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \] \[\Delta_v = v(x_0,y_0) - j_0 = t_{10}x_0 + t_{11}y_0 + t_{12} - \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \] Then making the transforms \(x' = x - x_0\), \(y' = y - x_0\), \(i' = i - i_0\), \(j' = j - x_0\) \begin{eqnarray*} F(u,v) & = & F\left( {t_{00}x + t_{01}y + t_{02} - i \atop t_{10}x + t_{11}y + t_{12} - j} \right)\\ & = & F\left( {t_{00}(x'+x_0) + t_{01}(y'+y_0) + t_{02} - (i'+i_0) \atop t_{10}(x'+x_0) + t_{11}(y'+y_0) + t_{12} - (j'+j_0)} \right) \\ & = & F\left( {\Delta_u + t_{00}x' + t_{01}y' - i' \atop \Delta_v + t_{10}x' + t_{11}y' - j'} \right) \end{eqnarray*} Using that, we can then reparameterize the sums and integrals and define coefficients that depend only on \((\Delta_u,\Delta_v)\), which we'll call the \emph{phase} at the point \((x_0,y_0)\): \[ B_{x_0,y_0} = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i_0+i,j_0+j} C_{i,j}(\Delta_u,\Delta_v) \] \[ C_{i,j}(\Delta_u,\Delta_v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F\left( {\Delta_u + t_{00}x + t_{01}y - i \atop \Delta_v + t_{10}x + t_{11}y - j} \right) G\left( {x \atop y} \right) dxdy \] \section{Separability} A frequent special case is when the reconstruction and sampling functions are of the form: \[F(u,v) = f(u)f(v)\] \[G(x,y) = g(x)g(y)\] If we also have a transform that is purely a scale and translation; (\(t_{10} = 0\), \(t_{01} = 0\)), then we can separate \(C_{i,j}(\Delta_u,\Delta_v)\) into the product of a \(x\) portion and a \(y\) portion: \[C_{i,j}(\Delta_u,\Delta_v) = c_{i}(\Delta_u) c_{j}(\Delta_v)\] \[c_{i}(\Delta_u) = \int_{-\infty}^{\infty} f(\Delta_u + t_{00}x - i)g(x)dx\] \[c_{j}(\Delta_v) = \int_{-\infty}^{\infty} f(\Delta_v + t_{11}y - j)g(y)dy\] \section{Some filters} gdk-pixbuf provides 4 standard filters for scaling, under the names ``NEAREST'', ``TILES'', ``BILINEAR'', and ``HYPER''. All of turn out to be separable as discussed in the previous section. For ``NEAREST'' filter, the reconstruction function is simple replication and the sampling function is a delta function\footnote{A delta function is an infinitely narrow spike, such that: \[\int_{-\infty}^{\infty}\delta(x)f(x) = f(0)\]}: \[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr 0, & otherwise}\] \[g(t) = \delta(t - 0.5)\] For ``TILES'', the reconstruction function is again replication, but we replace the delta-function for sampling with a box filter: \[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr 0, & otherwise}\] \[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr 0, & otherwise}\] The ``HYPER'' filter (in practice, it was originally intended to be something else) uses bilinear interpolation for reconstruction and a box filter for sampling: \[f(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr 0, & otherwise}\] \[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr 0, & otherwise}\] The ``BILINEAR'' filter is defined in a somewhat more complicated way; the definition depends on the scale factor in the transform (\(t_{00}\) or \(t_{01}]\). In the \(x\) direction, for \(t_{00} < 1\), it is the same as for ``TILES'': \[f_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr 0, & otherwise}\] \[g_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr 0, & otherwise}\] but for \(t_{10} > 1\), we use bilinear reconstruction and delta-function sampling: \[f_u(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr 0, & otherwise}\] \[g_u(t) = \delta(t - 0.5)\] The behavior in the \(y\) direction depends in the same way on \(t_{11}\). \end{document}