

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

Niels de Vos Sr. Software Maintenance Engineer, Red Hat Gluster Community Day in Frankfurt - 2013-10-30

Agenda

- Technology Overview
- Scaling Up and Out
- A Peek at GlusterFS Logic
- Redundancy and Fault Tolerance
- Data Access
- General Administration
- Use Cases
- Common Pitfalls

Technology Overview

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

What is GlusterFS?

- Scalable, general-purpose storage platform
 - POSIX-y Distributed File System
 - Object storage (swift)
 - Distributed block storage (qemu)
 - Flexible storage (libgfapi)
- No Metadata Server
- Heterogeneous Commodity Hardware
- Standards-Based Clients, Applications, Networks
- Flexible and Agile Scaling
 - Capacity Petabytes and beyond
 - Performance Thousands of Clients

What is Red Hat Storage?

- Enterprise Implementation of GlusterFS
- Software Appliance
- Bare Metal Installation
- Built on RHEL + XFS
- Subscription Model
- Storage Software Appliance
 - Datacenter and Private Cloud Deployments
- Virtual Storage Appliance
 - Amazon Web Services Public Cloud Deployments

GlusterFS vs. Traditional Solutions

- A basic NAS has limited scalability and redundancy
- Other distributed filesystems limited by metadata
- SAN is costly & complicated but high performance & scalable
- GlusterFS =
 - Linear Scaling
 - Minimal Overhead
 - High Redundancy
 - Simple and Inexpensive Deployment

Technology Stack

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

Terminology

- Brick
 - A filesystem mountpoint
 - A unit of storage used as a GlusterFS building block
- Translator
 - Logic between the bits and the Global Namespace
 - Layered to provide GlusterFS functionality
- Volume
 - Bricks combined and passed through translators
- Node / Peer
 - Server running the gluster daemon and sharing volumes

Disk, LVM, and Filesystems

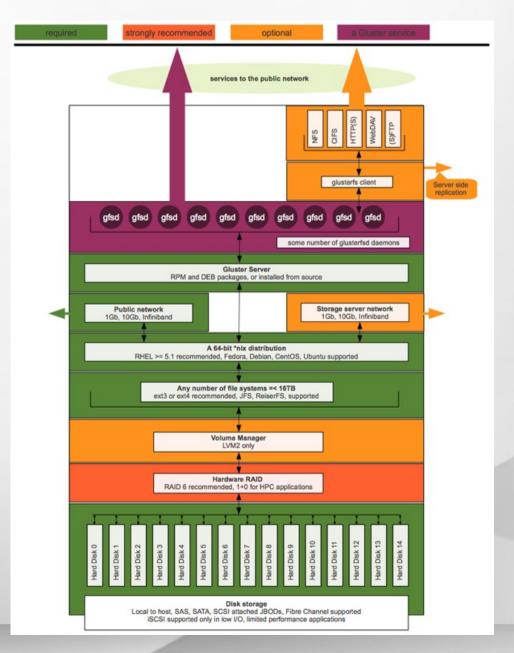
- Direct-Attached Storage (DAS)
 -or-
- Just a Bunch Of Disks (JBOD)
- Hardware RAID
 - RHS: RAID 6 required
- Logical Volume Management (LVM)
- XFS, EXT3/4, BTRFS
 - Extended attributes support required
 - RHS: XFS required

Gluster Components

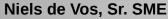
- glusterd
 - Elastic volume management daemon
 - Runs on all export servers
 - Interfaced through gluster CLI
- glusterfsd
 - GlusterFS brick daemon
 - One process for each brick
 - Managed by glusterd

Gluster Components

- glusterfs
 - NFS server daemon
 - FUSE client daemon
 - Proactive self-heal daemon
- mount.glusterfs
 - FUSE native mount tool
- gluster
 - Gluster Console Manager (CLI)

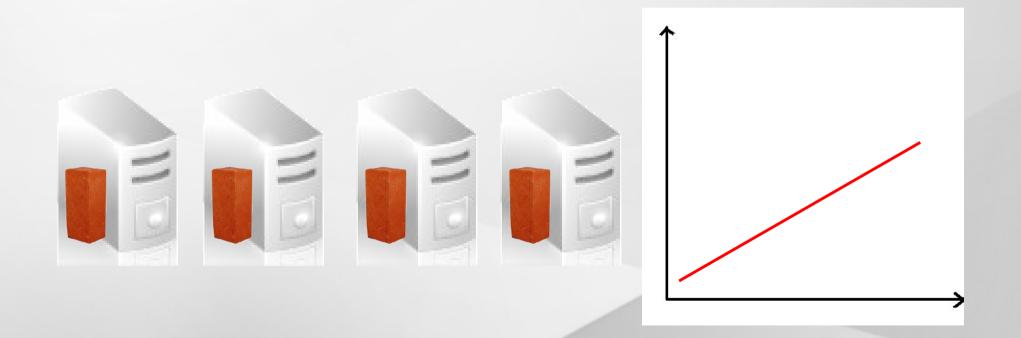


Data Access Overview


- GlusterFS Native Client
 - Filesystem in Userspace (FUSE)
- NFS
 - Built-in Service
- SMB/CIFS
 - Samba server required
- Unified File and Object (UFO)
 - Simultaneous object-based access
 - NEW! libgfapi flexible abstracted storage
 - Integrated in upstream Samba and Ganesha-NFS

Putting it All Together

Scaling Up

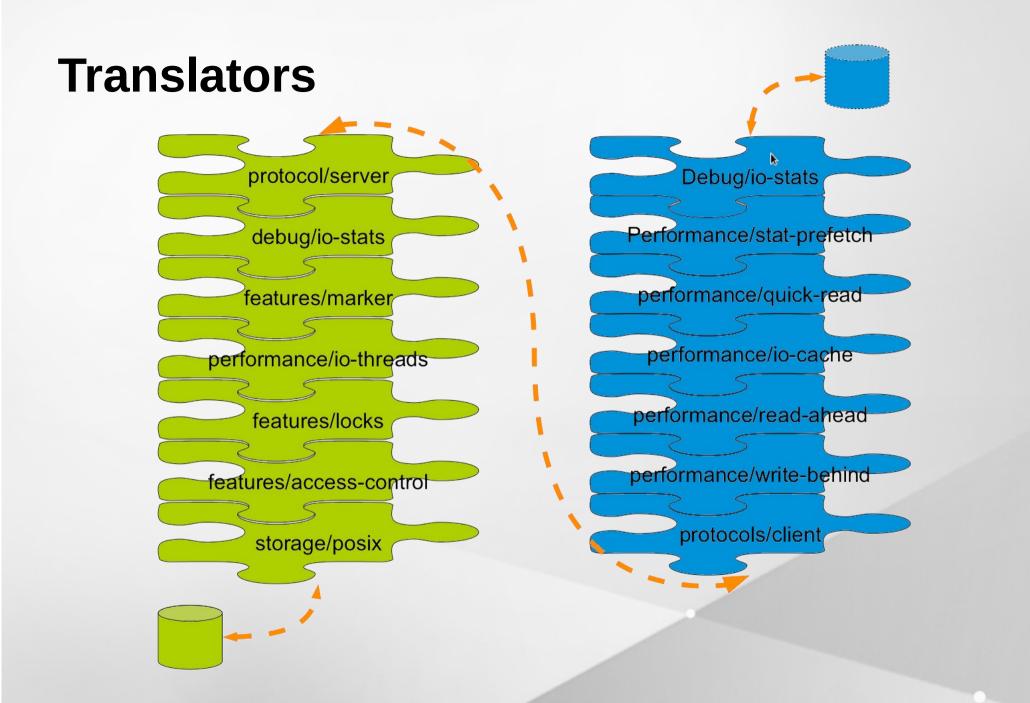

- Add disks and filesystems to a node
- Expand a GlusterFS volume by adding bricks

Scaling Out

- Add GlusterFS nodes to trusted pool
- Add filesystems as new bricks

Under the Hood

Demystifying Gluster


GlusterFS and RHS for the SysAdmin

Elastic Hash Algorithm

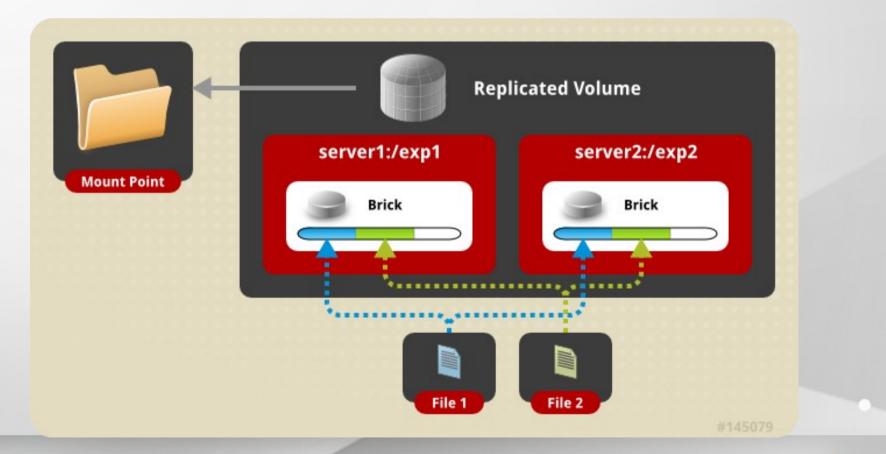
- No central metadata
 - No Performance Bottleneck
 - Eliminates risk scenarios
- Location hashed intelligently on path and filename
 - Unique identifiers, similar to md5sum
- The "Elastic" Part
 - Files assigned to virtual volumes
 - Virtual volumes assigned to multiple bricks
 - Volumes easily reassigned on the fly

Basic Volumes

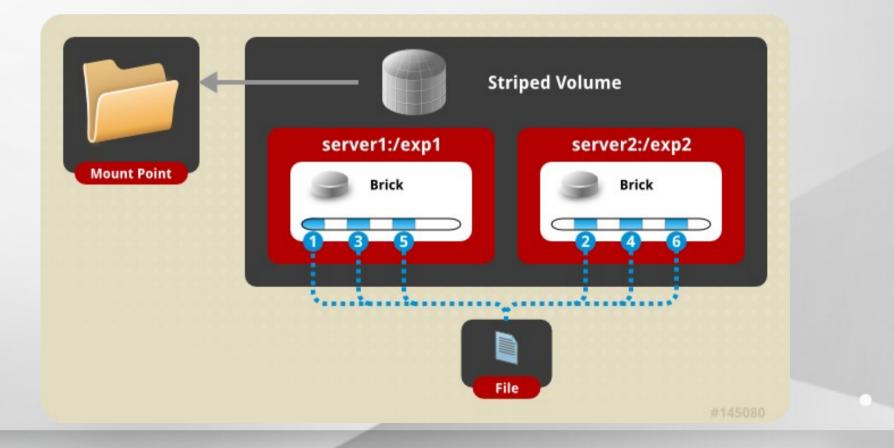
Demystifying Gluster


GlusterFS and RHS for the SysAdmin

Distributed Volume


- Files "evenly" spread across bricks
- Similar to file-level RAID 0
- Server/Disk failure could be catastrophic

Replicated Volume

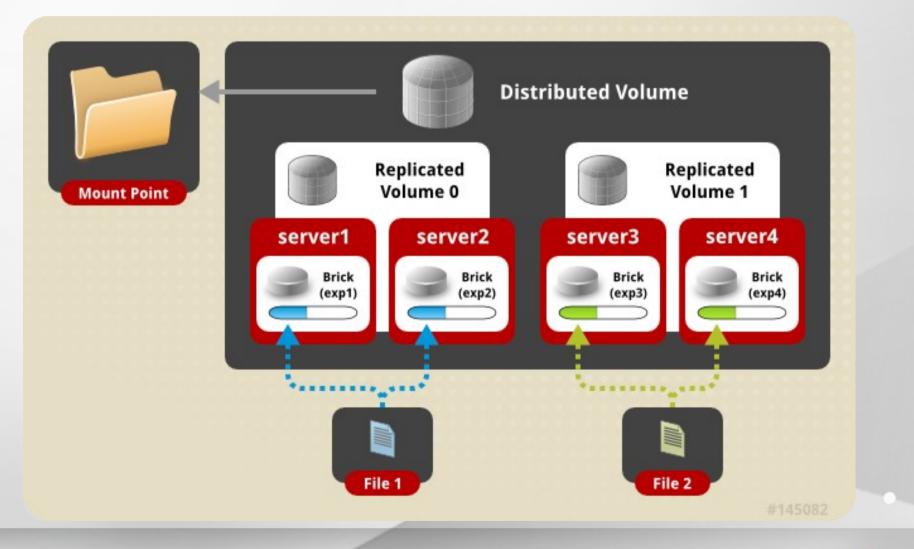

- Copies files to multiple bricks
- Similar to file-level RAID 1

Striped Volumes

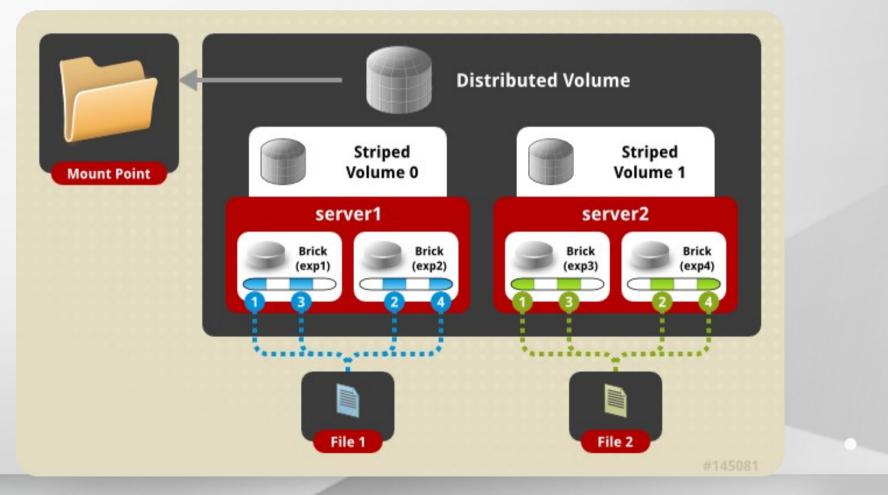
- Individual files split among bricks
- Similar to block-level RAID 0
- Limited Use Cases HPC Pre/Post Processing

Layered Functionality

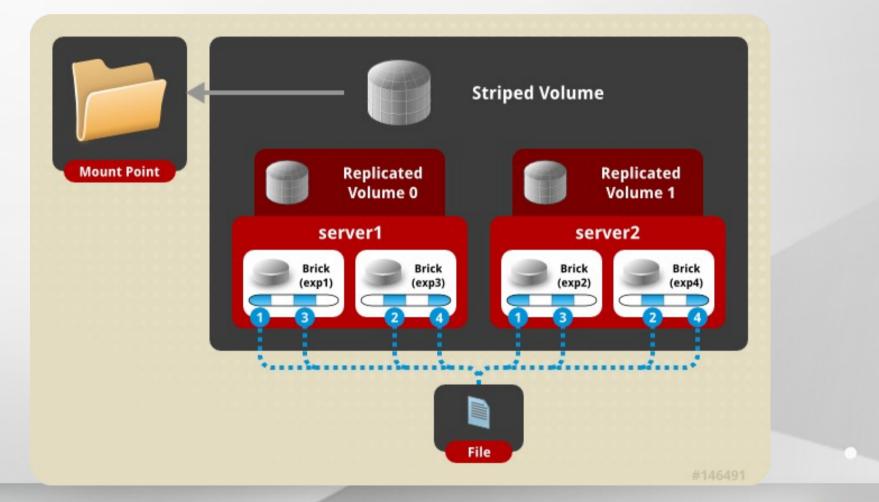
Demystifying Gluster


GlusterFS and RHS for the SysAdmin

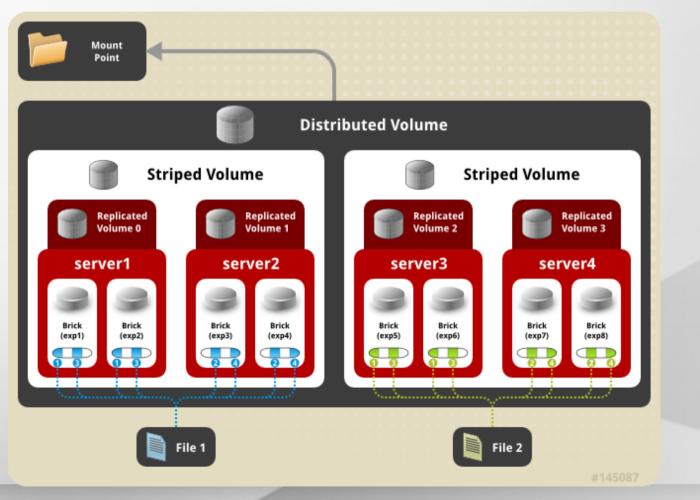
Distributed Replicated Volume


Distributes files across replicated bricks

Distributed Striped Volume


- Files striped across two or more nodes
- Striping plus scalability

Striped Replicated Volume

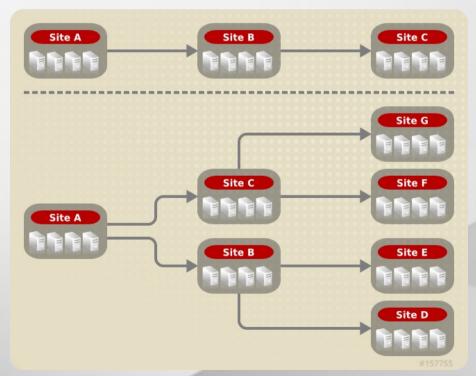

- RHS 2.0 / GlusterFS 3.3+
- Similar to RAID 10 (1+0)

Distributed Striped Replicated Volume

- RHS 2.0 / GlusterFS 3.3+
- Limited Use Cases Map Reduce

Asynchronous Offsite for DR and Archive

Demystifying Gluster


GlusterFS and RHS for the SysAdmin

Geo Replication

- Asynchronous across LAN, WAN, or Internet
- Master-Slave model -- Cascading possible
- Continuous and incremental
- Data is passed between defined master and slave only

Replicated Volumes vs Geo-replication

Replicated Volumes	Geo-replication
Mirrors data across clusters	Mirrors data across geographically distributed clusters
Provides high-availability	Ensures backing up of data for disaster recovery
Synchronous replication (each and every file operation is sent across all the bricks)	Asynchronous replication (checks for the changes in files periodically and syncs them on detecting differences)

Data Access

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

GlusterFS Native Client (FUSE)

- FUSE kernel module allows the filesystem to be built and operated entirely in userspace
- Specify mount to any GlusterFS server
- Native Client fetches volume layout (.vol file) from the mounted server
- Communicates directly with all bricks to access data
- Recommended for high concurrency and high write performance
- Load is inherently balanced across distributed volumes

NFS

- Standard NFS v3 clients
 - Note: Mount with vers=3 option
- Standard automounter is supported
- Mount to any storage server, or use a load balancer
- GlusterFS NFS server includes Network Lock Manager (NLM) to synchronize locks across clients
- Better performance for reading many small files from a single client
- Load balancing must be managed externally
 - Round Robin DNS and/or virtual IP-address(es)

NEW! libgfapi

- Introduced with GlusterFS 3.4
- User-space library for accessing data in GlusterFS
- Filesystem-like API
- Runs in application process
- no FUSE, no copies, no context switches
- ...but same volfiles, translators, etc.

General Administration

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

Preparing a Brick

lvcreate -L 100G -n lv_brick1 vg_server1
mkfs -t xfs -i size=512 /dev/vg_server1/lv_brick1
mkdir /brick1
mount /dev/vg_server1/lv_brick1 /brick1
echo '/dev/vg_server1/lv_brick1 /brick1 xfs defaults 1 2' >> /etc/fstab

Adding Nodes (peers) and Volumes

Peer Probe

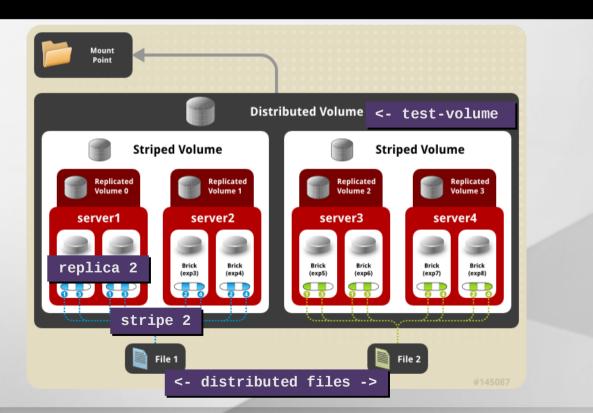
gluster> peer probe server3 gluster> peer status Number of Peers: 2

Hostname: server2 Uuid: 5e987bda-16dd-43c2-835b-08b7d55e94e5 State: Peer in Cluster (Connected)

Hostname: server3 Uuid: 1e0ca3aa-9ef7-4f66-8f15-cbc348f29ff7 State: Peer in Cluster (Connected)

Distributed Volume

```
gluster> volume create my-dist-vol server2:/brick2 server3:/brick3
gluster> volume info my-dist-vol
Volume Name: my-dist-vol
Type: Distribute
Status: Created
Number of Bricks: 2
Transport-type: tcp
Bricks:
Brick1: server2:/brick2
Brick2: server3:/brick3
gluster> volume start my-dist-vol
```



redhat.

Distributed Striped Replicated Volume

gluster> volume create test-volume replica 2 stripe 2 transport tcp \
server1:/exp1 server1:/exp2 server2:/exp3 server2:/exp4 \
server3:/exp5 server3:/exp6 server4:/exp7 server4:/exp8
Multiple bricks of a replicate volume are present on the same server. This setup is not
optimal.
Do you still want to continue creating the volume? (y/n) y
Creation of volume test-volume has been successful. Please start the volume to access

data.

Distributed Striped Replicated Volume

gluster> volume create test-volume stripe 2 replica 2 transport tcp \
server1:/exp1 server2:/exp3 server1:/exp2 server2:/exp4 \
server3:/exp5 server4:/exp7 server3:/exp6 server4:/exp8
Creation of volume test-volume has been successful. Please start the volume to access
data.

gluster> volume info test-volume

```
Volume Name: test-volume
Type: Distributed-Striped-Replicate
Volume ID: 8f8b8b59-d1a1-42fe-ae05-abe2537d0e2d
Status: Created
Number of Bricks: 2 x 2 x 2 = 8
Transport-type: tcp
Bricks:
Brick1: server1:/exp1
Brick2: server2:/exp3
Brick3: server1:/exp2
Brick4: server2:/exp4
Brick5: server3:/exp5
Brick6: server4:/exp7
Brick7: server3:/exp8
```


Manipulating Bricks in a Volume

gluster> volume add-brick my-dist-vol server4:/brick4

gluster> volume rebalance my-dist-vol fix-layout start						
gluster> volume rebalance my-dist-vol start gluster> volume rebalance my-dist-vol status Node Rebalanced-files size scanned failures status						
localhost	112	15674	170	Ο	completed	
10.16.156.72	140	3423	321	2	completed	

gluster> volume remove-brick my-dist-vol server2:/brick2 start gluster> volume remove-brick my-dist-vol server2:/brick2 status							
Node	Rebalanced-files	size	scanned	failures	status		
localhost	16	16777216	52	Θ	in progress		
192.168.1.1	13	16723211	47	0	in progress		
gluster> volume remove-brick my-dist-vol server2:/brick2 commit							

Migrating Data / Replacing Bricks

gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 start
gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 status
Current File = /usr/src/linux-headers-2.6.31-14/block/Makefile
Number of files migrated = 10567
Migration complete
gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 commit

Volume Options

Auth

gluster> volume set my-dist-vol auth.allow 192.168.1.*
gluster> volume set my-dist-vol auth.reject 10.*

NFS

gluster> volume set my-dist-vol nfs.volume-access read-only
gluster> volume set my-dist-vol nfs.disable on

Other advanced options

gluster> volume set my-dist-vol features.read-only on gluster> volume set my-dist-vol performance.cache-size 67108864

Volume Top Command

<pre>gluster> volume top my-dist-vol read brick server3:/brick3 list-cnt 3 Brick: server:/export/dir1</pre>					
read call count	filename				
116	/clients/client0/~dmtmp/SEED/LARGE.FIL				
64	/clients/client0/~dmtmp/SEED/MEDIUM.FIL				
54	/clients/client2/~dmtmp/SEED/LARGE.FIL				

- Many top commands are available for analysis of files, directories, and bricks
- Read and write performance test commands available
 - Perform active dd tests and measure throughput

Volume Profiling

gluster> volume profile my-dist-vol start
gluster> volume profile my-dist-vol info
Brick: Test:/export/2
Cumulative Stats:

Block Size:		1b+	3	32b+	64b+	
00.	Read:	0		0	0	
	Write:	908		28	8	
%-laten	ncy Avg-	Min-	Max-	calls	Fop	
	latency	Latency	Latency			
4.82	1132.28	21.00	800970.00	4575	WRITE	
5.70	156.47	9.00	665085.00	39163	READDIRP	
11.35	315.02	9.00	1433947.00	38698	LOOKUP	
11.88	1729.34	21.00	2569638.00	7382	FXATTROP	
47.35	104235.02	2485.00	7789367.00	488	FSYNC	
Duration : 335						
BytesRead : 94505058						
BytesWritten : 195571980						

redhat.

Use Cases

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

redhat.

Common Solutions

- Media / Content Distribution Network (CDN)
- Backup / Archive / Disaster Recovery (DR)
- Large Scale File Server
- Home directories
- High Performance Computing (HPC)
- Infrastructure as a Service (laaS) storage layer

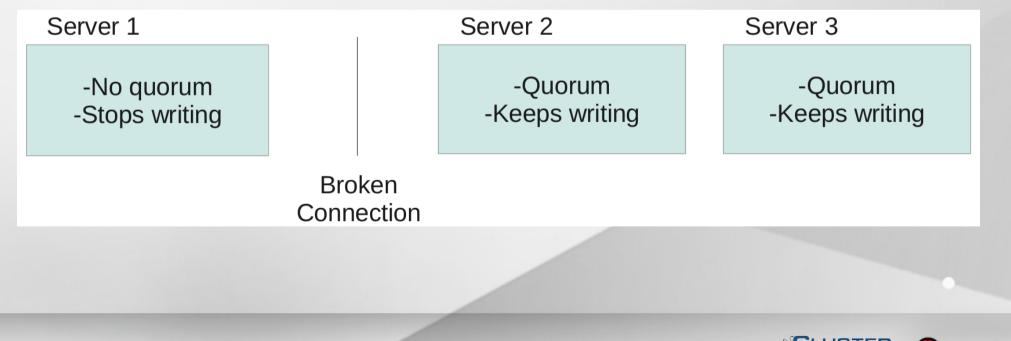
Hadoop – Map Reduce

- Access data within and outside of Hadoop
- No HDFS name node single point of failure / bottleneck
- Seamless replacement for HDFS
- Scales with the massive growth of big data

Common Pitfalls

Demystifying Gluster

GlusterFS and RHS for the SysAdmin


Split-Brain Syndrome

- Communication lost between replicated peers
- Clients write separately to multiple copies of a file
- No automatic fix
 - May be subjective which copy is right ALL may be!
 - Admin determines the "bad" copy and removes it
 - Self-heal will correct the volume
 - Trigger a recursive stat to initiate
 - Proactive self-healing in RHS 2.0 / GlusterFS 3.3

Quorum Enforcement

- Disallows writes (EROFS) on non-quorum peers
- Significantly reduces files affected by split-brain
- Preferred when data integrity is the priority
- Not preferred when application integrity is the priority

redhat

NEW! Server-Side Quorum

- In GlusterFS 3.3
 - Client-side
 - Replica set level
- NOW in GlusterFS 3.4
 - Server-side
 - Cluster-level (glusterd)

Your Storage Servers are Sacred!

- Don't touch the brick filesystems directly!
- They're Linux servers, but treat them like appliances
 - Separate security protocols
 - Separate access standards
- Don't let your Jr. Linux admins in!
 - A well-meaning sysadmin can quickly break your system or destroy your data

Do it!

Demystifying Gluster GlusterFS and RHS for the SysAdmin

Do it!

- Build a test environment in VMs in just minutes!
- Get the bits:
 - Fedora 19 has GlusterFS packages natively
 - RHS 2.1 RC ISO available on Red Hat Portal
 - Go upstream: www.gluster.org

Slides Available at: http://people.redhat.com/ndevos/talks/ (based on the slide deck from Dustin Black)

- ndevos@redhat.com
 storage-sales@redhat.com
- RHS:
 - www.redhat.com/storage/
- GlusterFS:
 - www.gluster.org
- TAM: access.redhat.com/support/

Demystifying Gluster GlusterFS and RHS for the SysAdmin