
Debugging GlusterFS with
Wireshark

25 February 2013

Niels de Vos
Sr. Software Maintenance Engineer
Support Engineering Group
Red Hat Global Support Services

Agenda

● Brief description of Wireshark
● How to capture network traffic
● Explanation of the basic GlusterFS protocols
● Identifying packets
● Filtering for certain network packets
● Commandline tools and scripting

What is Wireshark?

● One of the most well known network protocol
analyzers

● Can capture network traffic
● Can display hundreds of protocols

● Version 1.8 and newer support GlusterFS

● Comes with several useful commandline tools
● tshark, editcap, capinfos, ...

● Homepage: www.wireshark.org

Capturing network traffic

● Capture with Wireshark
● Convenient, nice graphical interface
● Analyze on the system used for capturing
● Got (a recent) Wireshark on your server?

● Capture with tcpdump
● Headless, no graphical environment needed
● Separate production and analysis systems
● Save in a file for off-line analysis
● Can capture with rotating filenames

Capturing network traffic: examples

● Save to a file: -w glusterfs.pcap
● Capture on all interfaces: -i any
● Do not chop off packets: -s 0
● Filters:

● Only TCP: tcp
● Ports 24007 to 240100: portrange 24007-240100

Result:
tcpdump glusterfs.pcap -i any -s 0 \
 tcp and portrange 24007-24100

GlusterFS protocols

● Everything is TCP
● Based on SUN Remote Procedure Calls

● RFC 5531
● Data is encoded in XDR (RFC 4506)
● Similarities with portmapper and NFS

● A number of sub-protocols are used
● GlusterFS is the most important one (I/O)

http://tools.ietf.org/html/rfc5531
http://tools.ietf.org/html/rfc4506

Identifying packets

● Each packet has a source and a destination
● RPC Calls are made by the client
● RPC Replies are sent by the server
● The RPC header contains the number for the

sub-protocol (GlusterFS, Gluster CLI, ...)
● Server side ports are mostly unique

● Only exception is glusterd on port 24007

● Each brick (glusterfsd) listens on its own port

Identifying packets: example

Minimal packet details needed:
Internet Protocol Version 4
 Source: 172.31.122.154
 Destination: 172.31.122.104
Transmission Control Protocol
 Source port: 24009
 Destination port: 1022
Remote Procedure Call
 Message Type: Reply (1)
 [Program: GlusterFS (1298437)]
 [Program Version: 330]
 [Procedure: LOOKUP (27)]

Identifying packets: step 1

Step 1:
Remote Procedure Call
 Message Type: Reply (1)
 [Program: GlusterFS (1298437)]
 [Program Version: 330]
 [Procedure: LOOKUP (27)]

● A reply on a LOOKUP is sent from a brick to a
client.

● The GlusterFS protocol is handled by a brick
process (glusterfsd) on the server.

Identifying packets: step 2

Step 2: details of an RPC Reply
Internet Protocol Version 4
 Source: 172.31.122.154
 Destination: 172.31.122.104
Transmission Control Protocol
 Source port: 24009
 Destination port: 1022

● The client has address 172.31.122.104
● The server has address 172.31.122.154

● Has hostname vm122-154
● The brick listens on port 24009

Identifying packets: step 3a

Step 3a: Get the details from the server
cd /var/lib/glusterd
grep -l 24009 vols/*/bricks/*
vols/dht/bricks/vm122-154:-bricks-dht

● The client contacted the brick serving
/bricks/dht on server vm122-154.

● The brick is part of volume “dht”.

Identifying packets: step 3b

Step 3b: Combine the details with processes
netstat -lpt | grep 24009
... *:24009 ... LISTEN 5238/glusterfsd

ps O -p 5238
 ... --brick-name /bricks/dht ...

gluster volume info | \
 grep -e "^Volume N" -e vm122-154.*/bricks/dht

● The client contacted the brick serving
/bricks/dht on server vm122-154.

● The brick is part of volume “dht”.

Filtering

● Useful filter for browsing and searching
interesting events:
● Packets with contents: tcp.len > 0

● Filtering on the GlusterFS protocol
● GlusterFS is used for I/O: glusterfs

Combined: tcp.len > 0 && glusterfs

Building filters

● Quick'n easy with Wireshark
● Pick a property of a packet in the tree
● Right click on it and select:

● Copy > Fieldname
● Copy > As filter

● Combine filters with &&, || and use (...)

● tshark -G shows all known fields as well

Filtering on RPC Credentials

The RPC Credentials sent with a Call contain:
Remote Procedure Call, Type:Call
 Program: GlusterFS (1298437)
 Procedure: CREATE (23)
 Credentials
 Flavor: AUTH_GLUSTERFS (390039)
 PID: 2442
 UID: 500
 GID: 500
 Auxiliary GIDs (1) [500]
 GID: 500

An RPC Reply does not contain the Credentials,
but there is a reference to the Call.

Filtering on Process or User

● PID is the process doing the I/O
● Filter on: rpc.auth.pid == 2442

● UID is the user-ID of the process
● Filter on: rpc.auth.uid == 500

This can be used to identify processes and/or
users that cause major I/O:
$ echo frame call_in size uid ; \
 tshark -r bottle.pcap.gz -T fields \
 -e frame.number -e rpc.repframe \
 -e rpc.fraglen -e rpc.auth.uid glusterfs

Statistics on Procedure Calls

Counting the number of procedures, based on the
RPC details:
Remote Procedure Call
 Message Type: Call (0)
 Program: GlusterFS (1298437)
 Procedure: LOOKUP (27)

● No need to count RPC Replies
● Filter: rpc.msgtyp == 0

The values of the glusterfs.proc field are listed by
tshark -G values.

Unified File and Object debugging

● Wireshark can decrypt SSL when the private
key is added:
● Edit > Preferences > Protocols > SSL
● Add your key to the “RSA keys list”.

● Non-SSL is mostly easier and safer.
● Capture on the SWIFT-proxy that is used by the

UFO application.

Downloads

● This presentation and example scripts:
● http://people.redhat.com/ndevos/talks/

inside debugging-glusterfs-with-wireshark.d

● Wireshark-1.8+ for RHEL-6 based distributions:
● http://devos.fedorapeople.org/wireshark-gluster/

http://people.redhat.com/ndevos/talks/
http://devos.fedorapeople.org/wireshark-gluster/

Thanks!

You can reach me
● As ndevos in #gluster

on Freenode
● ndevos@redhat.com
● Or on LinkedIn

mailto:ndevos@redhat.com
http://linkedin.com/in/nielsdevos

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

