

Aligning Stacked Devices

Mike Snitzer
Senior Software Engineer, Red Hat
June 11, 2010

2

I/O Limits – Quest for increased drive capacity

● Each sector on current 512 byte sector disks is quite a bit bigger than
512 bytes because of fields used internally by the drive firmware

● The only way to increase capacity is to reduce overhead associated
with each physical sector on disk

● Top: 8 x 512B sectors, each with overhead, needed to store 4KB of
user data

● Bottom: 4KB sector drives can offer the same with much less
overhead

3

I/O Limits – Transitioning to 4KB

● 4K sector drives may or may not accept unaligned IO

● If they do accept unaligned IO there will be a performance penalty

● Vendors will support a legacy OS with drives that have a 512B
logical blocksize (external) and 4K physical blocksize (internal)

● Misaligned requests will force drive to perform a read-modify-write

● Vendors working on techniques to mitigate the R-M-W in firmware

● R-M-W will cause a significant drop in performance: induces
increased latency and lowers IOPS

● There is quite a bit of inertia behind trying to preserve 512b
sector support

4

I/O Limits – Alignment

● DOS partition tables default to putting the first partition on LBA 63

● Desktop-class 4KB drives can be formatted to compensate for DOS
partitioning

● sector 7 is the lowest aligned logical block, the 4KB sectors start
at LBA -1, and consequently sector 63 is aligned on a 4KB
boundary

● Linux >= 2.6.31 allows partition tools, LVM2, etc to understand that
this compensation is being used (alignment_offset=3584 bytes),
from:

/sys/block/$DEVICE/alignment_offset

5

I/O Limits – Performance I/O hints

● Linux also provides the ability to train upper storage layers
based on hardware provided I/O hints

● Preferred I/O granularity for random I/O
● minimum_io_size - the smallest request the device can

perform w/o incurring a hard error or a read-modify-write
penalty (e.g. RAID chunk size)

● Optimal sustained I/O size
● optimal_io_size - the device's preferred unit of receiving

I/O (e.g. RAID stripe width)
● Available through sysfs:

/sys/block/$DEVICE/queue/minimum_io_size

/sys/block/$DEVICE/queue/optimal_io_size

6

Stacking I/O Limits – Overview

● All layers of the Linux I/O stack have been engineered to
propagate the various I/O Limits up the stack.

● When a layer consumes an attribute or aggregates many
devices, it must expose appropriate I/O Limits so that upper-
layer devices or tools will have an accurate view of the storage
as it transformed.

● Examples:

● Only one layer in the I/O stack should adjust for a non-zero
alignment_offset

● once a layer adjusts for it it will export a device with an
alignment_offset of zero

● A striped LVM logical volume must export a minimum_io_size
and optimal_io_size that reflects chunk_size and stripe count

7

Stacking I/O Limits – LVM

● LVM2 >= 2.02.51 (2.02.62 saw last small related fix)

● Added devices/data_alignment_detection to lvm.conf
● Added devices/data_alignment_offset_detection to lvm.conf
● Added --dataalignmentoffset to pvcreate to shift start of

aligned data area.
● LVM will read I/O Limits to determine the optimal start of the

data area (takes into account alignment_offset,
minimum_io_size and optimal_io_size)

● LVM defaults to creating a 64K aligned data area
● But I/O Limits support allows for additional precision
● DM uses LVM2 determined start when stacking limits

8

Stacking I/O Limits – Block layer and DM

● Block layer (Linux >= 2.6.31) has infrastructure to stack I/O limits

● blk_stack_limits(top, bottom, start) verifies alignment and stacks
{physical,logical}_block_size and {minimum,optimal}_io_size

● physical_block_size, logical_block_size and minimum_io_size use
max() when stacking top and bottom device limits

● optimal_io_size uses lcm()

● DM now has infrastructure to detect if a combination of devices
will lead to a misaligned DM device

● Each DM target implements an .iterate_devices method that
calls block layer's blk_stack_limits for each underlying device
(during table load)

● The final stacked limits get assigned to the DM device's
queue when the DM device is resumed

9

Stacking I/O Limits – How it is made possible

● It all starts with the SCSI and ATA protocols

● The standards have been extended to allow devices to
provide alignment and I/O hints when queried

● Not all vendors' hardware will “just work”
● Linux now retrieves the alignment and I/O hints that a device

reports

● Linux presents I/O Limits through uniform sysfs attributes for all
block devices. Ioctl interface is also available.

● DM, LVM2, cryptsetup have been updated to support I/O Limits

● Also Ext[234], XFS, libblkid, parted, fdisk, anaconda, virtio
● See: http://people.redhat.com/msnitzer/docs/io-limits.txt

● Thanks to Martin K. Petersen

http://people.redhat.com/msnitzer/docs/io-limits.txt

10

