
Bill Meyer
JBoss Sr. Solutions Architect
bill@redhat.com

JBoss Performance Tuning

JVM Memory Tuning

Old Generation Young Generation

•  Young generation
•  Objects are initially allocated in eden

•  One survivor space is empty at any time,
and serves as the destination of any live
objects in eden and the other survivor space
during the next copying collection.

•  Objects are copied between survivor spaces
until they are old enough to be tenured
(copied to the tenured generation).

•  Old/Tenured generation
•  Where objects are moved to that survive the

1st major garbage collection

•  Permanent
•  Where metadata describing classes and

methods reside. Also used for String pools

JVM Heap

Eden
S

ur
vi

vo
r

S
pa

ce
 0

Tenured Permanent

Total JVM Heap

S
ur

vi
vo

r
S

pa
ce

 1

Major Collection

Minor
Collection

•  Minor Collection
•  Occurs when the Young Generation is full
•  Low impact on performance (smaller, targeted area)

•  Major Collection
•  Involves scanning the entire Java heap
•  MANY objects to look at
•  Cause of most performance bottlenecks

Two Types of Collections

1.  Tune the JVM heap size
2.  Tune the Young/Tenured Generation Ratio
3.  Tune the correct garbage collector algorithm

JVM Tuning – Basic Steps

•  To tune the JVM-
•  Identify the appropriate maximum heap size for the application

and then set initial heap size to match
•  Use the (-Xms) and (-Xmx) arguments
•  For J2SE 5.0 and above, initial and max heap size is based on

hardware specs (# of cpu cores and memory)

Step 1 – Tune the JVM Heap Size

•  Set the max heap size-
•  Simply monitor application under load (jstat, jvisualvm, JBoss

Operations Network, etc.)
•  Add 25-30% to the peak heap size for buffer
•  Added buffer will help reduce the frequency of garbage

collection
•  Leave room for other running applications!

Step 1 – Tune the JVM Heap Size
Max Heap Size

•  Set the initial heap size-
•  For non-development-

•  Set it to be the same as the maximum heap size.
•  Increases predictability and avoids the need to allocate memory to

expand the heap.

•  For development-
•  Somewhere between default and max heap size is fine.

Step 1 – Tune the JVM Heap Size
Initial Heap Size

•  Choose a correct ratio between Young and Tenured
based on application characteristics
•  Large # of short-lived objects

•  Increase size of Young Generation

•  Large # of long-lived objects
•  Increase size of Tenured Generation
•  Examples- pools, caches, data that lives for the life of the

application

•  For most applications-
•  Optimal size is 1/3 to ½ of the heap

•  Must also tune the Survivor Space size!

Step 2 - Tune the Young/Tenured
Generation Ratio

•  Use the jstat utility with the –gcutil argument

•  $ jstat –gcutil –h5 <pid> 2s	

•  Outputs stats on garbage collection for a running Java Virtual Machine
	

	Column 	Description	
	S0 	 	Survivor space 0 utilization as a percentage of the space's current capacity.	
	S1 	 	Survivor space 1 utilization as a percentage of the space's current capacity.	
	E 	 	Eden space utilization as a percentage of the space's current capacity.	
	O 	 	Old space utilization as a percentage of the space's current capacity.	
	P 	 	Permanent space utilization as a percentage of the space's current capacity.	
	YGC 	 	Number of young generation GC events.	
	YGCT 	 	Young generation garbage collection time.	
	FGC 	 	Number of full GC events.	
	FGCT 	 	Full garbage collection time.	
	GCT 	 	Total garbage collection time.	

•  http://docs.oracle.com/javase/1.5.0/docs/tooldocs/share/jstat.html#gcutil_option

10

Monitor Garbage Collections in realtime

•  Two approaches- ratio vs. size
•  Ratio Example: -XX:NewRatio=3

•  Means ratio between tenured and young is 3:1
•  That is-

•  tenured occupies 3/4th the total heap
•  eden + survivor spaces occupies the other 1/4th total heap

•  Size Example: -XX:NewSize & -XX:MaxNewSize
•  Bind the young (new) generation size from below and above.
•  Setting these equal to one another fixes the Young generation

(just like -Xms and –Xmx fixes the heap size).
•  Allows for finer tuning than the integral multiples allowed by

NewRatio.

Young vs. Tenured Example

•  EAP5/EAP6 VM Arguments:
•  -XX:+UseCompressedOops
•  -Xms1303m
•  -Xmx1303m
•  -XX:MaxPermSize=256m
•  -Djava.net.preferIPv4Stack=true
•  -Dsun.rmi.dgc.client.gcInterval=3600000
•  -Dsun.rmi.dgc.server.gcInterval=3600000

Default JBoss JVM Arguments

•  Garbage collection-
•  a mechanism provided by Java Virtual Machine to reclaim heap

space from objects, which are eligible for Garbage collection.

•  Eligibility-
•  if an object is not reachable from any live threads
•  any static references.
•  In other words, an object becomes eligible for Garbage

collection if all its references are null.

•  Choosing the correct Garbage collector algorithm plays
an important role in application performance,
responsiveness, and throughput.

•  There are several garbage collectors available

Step 3 - Tune the GC Algorithm

•  Serial collector (-XX:+UseSerialGC)
•  Performs garbage collector using a single thread which stops other

JVM threads
•  Ideal for smaller applications (<100MB data set); not recommended

for production deployments

•  Use when
•  Application runs on a single processor
•  No pause time requirements

Step 3 - Tune the GC Algorithm
Selecting the Serial Collector

•  Parallel collector (-XX:+UseParallelGC)
•  Performs minor collections and major (J2SE >= 5.0) in parallel.
•  (Optionally) Enable parallel compaction (+UseParallelOldGC).
•  Ideal for multiprocessor machines and applications requiring high

throughput.
•  Also good for applications which fragmented Java heaps, allocating

large-size objects at different timelines.
•  Default parallel collector runs a collection thread per processor

core. Can be overridden with (-XX:ParallelGCThreads=#).

•  Use when
•  Peak application performance is 1st priority
•  Either no pause time requirements or > one second are ok

Step 3 - Tune the GC Algorithm
Selecting the Parallel Collector

•  Concurrent collector (-XX:+UseConcMarkSweepGC)
•  Performs most of its work concurrently using a single garbage

collector thread that runs with the application threads
simultaneously.

•  Best when used with fast processor machines and applications with
a strict service-level agreement.

•  Can be the best choice, also for applications using a large set of
long-lived objects live HttpSessions.

•  Use when
•  Application response time is more important than overall

throughput
•  Garbage collections must be kept < 1 second

Step 3 - Tune the GC Algorithm
Selecting the Concurrent Collector

JVM Resource Tuning

•  Application server resource pools
•  Improves performance by pooling resources that are expensive to create

•  eg., maintain open database connections so they are available when requested

•  Improves security by setting limits to the number of resources that can exist
at a time

•  eg., limit the number of worker threads for web requests

•  EAP6 uses several resource pools to manage different kind of
services
•  Default configuration for all resource pools to handle generic use cases
•  For mission-critical applications, identify the appropriate number of

resources to be assigned to your pools.

•  Tunable resource pools-
•  JDBC connection pool
•  EJB pool used by Stateless EJBs and MDBs
•  Web server pool of threads

Tuning Resource Pools

•  Creating JDBC connections is
very slow!
•  Use JDBC pools to cache open

connections for use-on-demand.
•  Closed connections are simply

returned to the pool and reused in
future requests

•  To determine the proper sizing,
you need to monitor your
connection usage.

<min-pool-size>
•  Specifies a minimum number of connections to keep

open
<prefill>

•  Used to pre-create connections on startup; use with
caution

•  This can produce a performance hit, especially if your
connections are costly to acquire.

<blocking-timeout-millis>

•  Used to minimize how long requests block waiting for
a connection

<idle-timeout-minutes>
•  Indicates how long a connection may be idle before

being closed

Tuning JDBC pools

<datasource jndi-name="java:jboss/datasources/ExampleDS” pool-name="ExampleDS" enabled="true" use-java-context="true">	
	<connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>	
	<driver>h2</driver>	
	<security>	
	 	<user-name>sa</user-name>	
	 	<password>sa</password>	
	</security>	
	<timeout>	
	 	<blocking-timeout-millis>30000</blocking-timeout-millis>	
	 	<idle-timeout-minutes>30</idle-timeout-minutes>	
	</timeout>	
	<pool>	
	 	<min-pool-size>15</min-pool-size>	
	 	<max-pool-size>25</max-pool-size>	
	 	<prefill>true</prefill>	
	</pool>	

</datasource>

•  Use the CLI to look at the runtime stats for your datasource
•  Interested in these statistics-

•  ActiveCount - displays the amount of connections which are
currently active

•  MaxUsedCount - the peak connections used by the application

Monitor the JDBC pool size

���[standalone@localhost:9999 /] /subsystem=datasources/data-source=ExampleDS/
statistics=pool:read-resource(include-runtime=true)	
{	
 "outcome" => "success",	
 "result" => {	
 "ActiveCount" => "15",	
 "AvailableCount" => "24",	
 "AverageBlockingTime" => "0",	
 "AverageCreationTime" => "11",	
 "CreatedCount" => "15",	
 "DestroyedCount" => "0",	
 "MaxCreationTime" => "161",	
 "MaxUsedCount" => "1",	
 "MaxWaitTime" => "0",	
 "TimedOut" => "0",	
 "TotalBlockingTime" => "0",	
 "TotalCreationTime" => "166”	
 },	
 "response-headers" => {"process-state" => "reload-required”}	
}	

•  Or the Web Console (with special URL!)

Monitor the JDBC pool size

•  Set <max-pool-size> to be 25% greater MaxUsedCount.

•  Pools will shrink automatically, provided that you have set <idle-timeout-
minutes>.

•  Watch the server logs for exceptions-
•  13:42:12,424 ERROR [stderr] (http-executor-threads - 4) Caused by:

javax.resource.ResourceException: IJ000655: No managed connections
available within configured blocking timeout (30000 [ms])

•  13:42:12,427 ERROR [stderr] (http-executor-threads – 4)at
org.jboss.jca.core.connectionmanager.pool.mcp.SemaphoreArrayListMana
gedConnectionPool.getConnection

•  Use JBoss Operations Network to monitor pool sizes for you!

Adjust the JDBC pool size

•  Like JDBC pools, EJB pools are used to cache
previously created EJBs

•  EJB creation and destruction can be expensive
operations

•  Reduces overheard of reinitializing beans everytime
they are needed

•  Two pools provided-
•  Stateless EJB pool
•  MDB pool

Tuning EJB Pools

•  A typical EJB pool configuration looks like the following:

<pools>	
 <bean-instance-pools>	
 <strict-max-pool name="slsb-strict-max-pool” max-pool-size="20”	
 instance-acquisition-timeout="5”	
 instance-acquisition-timeout-unit="MINUTES" />	
 <strict-max-pool name="mdb-strict-max-pool” max-pool-size="20”	
 instance-acquisition-timeout="5”	
 instance-acquisition-timeout-unit="MINUTES" />	
 </bean-instance-pools>	
</pools>

•  strict-max-pools are pools with a maximum upper limit
•  Once max limit is reached-

•  Requests will block waiting for a new bean
•  Or until the acquisition timeout is reached

Tuning EJB Pools

Define a new Thread Pool that will be used to service HTTP
requests:

 <subsystem xmlns="urn:jboss:domain:threads:1.1">	
 <bounded-queue-thread-pool name="http-executor">	
 <core-threads count="10" per-cpu="20" />	
 <queue-length count="10" per-cpu="20" />	
 <max-threads count="10" per-cpu="20" />	
 <keepalive-time time="10" unit="seconds" />	
 </bounded-queue-thread-pool>	
 </subsystem>

Tuning Web Pools
Step 1

For the HTTP connector, specify the Thread Pool using the
executor attribute:

<subsystem xmlns="urn:jboss:domain:web:1.1” default-virtual-server="default-host"
native="false">	
 <connector name="http" protocol="HTTP/1.1" scheme="http”	
 socket-binding="http" enabled="true" enable-lookups="false”	
 executor="http-executor" max-connections="200" max-post-size="2048”	
 max-save-post-size="4096" proxy-name="proxy" proxy-port="8081”	
 redirect-port="8" secure="false" />	
	
 <virtual-server name="default-host” enable-welcome-root="true">	
 <alias name="localhost" />	
 <alias name="example.com" />	
 </virtual-server>	
</subsystem>

Tuning Web Pools
Step 2

•  Tune the <core-threads> and <max-threads> attributes.
•  Set too low-

•  App server may not have enough threads to handle all of the
requests

•  Requests will sit idle waiting for another request thread to free up.

•  Set too high-
•  Consume a good chunk of memory
•  Your system will spend too much time-context switching

Tuning Web Pools

•  Use jvisualvm to see
thread states

•  Good-
•  Running threads
•  Sleeping threads

•  Suspicious-
•  Wait

•  Too many executor
threads and not enough
work?

•  Consuming resources
unnecessarily

Tuning Web Pools

•  Disable console logging-

	 	 	 	<root-logger>	
	 	 	 	 <level name="INFO" />	
	 	 	 	 	<handlers>	
	 	 	 	 	<!—	
	 	 	 	 	 <handler name="CONSOLE" />	
	 	 	 	 	-->	
	 	 	 	 	 <handler name="FILE" />	
	 	 	 	 	</handlers>	
	 	 	 	</root-logger>

Log Performance Tuning

•  Adjust verbosity as needed-
	

	 	 	 	…

	 	 	 	<logger category=”com.arjuna">	
	 	 	 	 	<level name=”ERROR" />	
	 	 	 	</logger>

	 	 	 	<logger category=”org.hibernate">	
	 	 	 	 	<level name="WARN" />	
	 	 	 	</logger>	
	 	 	 	…

Log Performance Tuning

•  Log patterns can influence the performance of your
applications

•  EAP6 default-

	<pattern-formatter pattern=	
	 	 	"%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n" />

Log Performance Tuning

•  Simply adding the %l flag-

	<pattern-formatter	
	 	pattern="%l %d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n" />	

•  Adds class and line number info-

	o ���rg.jboss.as.configadmin.parser.ConfigAdminAdd.performBoottime(
	ConfigAdminAdd.java:73) 19:16:52,862 INFO [org.jboss.as.configadmin]	
	(ServerService Thread Pool -- 26) JBAS016200: Activating ConfigAdmin Subsystem	

•  Great for development, horrible for production!

Log Performance Tuning

•  Other high-overhead flags to avoid
•  %C – outputs the caller class information
•  %M - outputs the method where logging was emitted
•  %F - outputs the filename where the logging request was

issued)

Log Performance Tuning

Questions?

