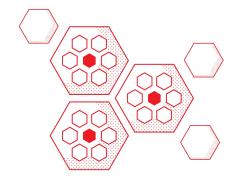
Introduction to Red Hat Advanced Cluster Management

Dean Peterson Full Stack Solution Architect dpeterso@redhat.com

Dean Peterson

Specialist Solution Architect dpeterso@redhat.com



What we'll discuss and show today

- ★ Why Multicluster Kubernetes?
- ★ Introduction to Advanced Cluster Management
- **★** Demo
 - Cluster Management
 - Application Lifecycle Management
 - Governance, Risk, and Compliance (GRC)
 - Cluster Visibility

Kubernetes adoption leads to multicluster

"As Kubernetes gains adoption across the industry, scenarios are arising in which I&O teams are finding they must deploy and manage multiple clusters, either in a single region on-premises or in the cloud, or across multiple regions....for a number of reasons, including multi-tenancy, disaster recovery, and with hybrid, multicloud, or edge deployments."

Where is the growth in cluster deployments?

Small Scale Dev teams

 Managing and syncing across
 Dev/QE/Pre-Prod/Prod clusters can be difficult

Medium Scale Organizations

- Retail with small clusters across 100s of locations
- Organizations with plan for growth 10-15 clusters moving to 100s

Large Scale

- Global organizations with 100s of clusters, hosting thousand of applications
- Large Retail with 1000s of stores

Edge Scale Telco

 100s of zones, 1000s of clusters and nodes across complex topologies

Reasons for deploying clusters

Application availability

Disaster recovery

Reduced latency

Edge deployments

Address industry standards

CapEx cost reduction

Geopolitical data residency guidelines

Avoid vendor lock-in

Multicluster management challenges

How do I normalize and centralize key functions across environments?

</i> ⟨/> Developer

Build and deploy a container app

- Easy cluster provisioning
- Controlling cluster configuration drift
- Ensuring app deployment from development to production

GO DevOps

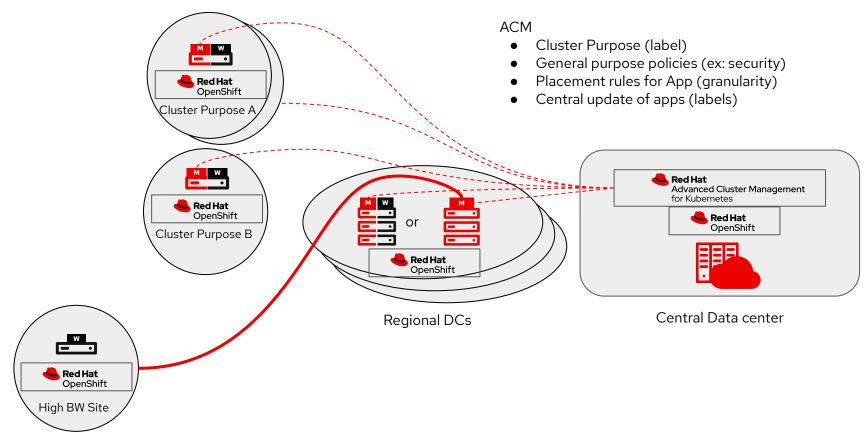
Develop, test, and produce clusters

- Consistent cluster provisioning
- Policy enforcement and governance across development, test, and production clusters
- Finding/modifying resources across clusters

Hybrid multicloud

Clusters deployed across public, private clouds, edge, in different geographies

- Single pane of glass visibility
- Deploying and distributing applications at scale
- Auditing and compliance


Single cluster

Multicluster growth

Distributed multicluster

Edge computing with Red Hat

Red Hat Advanced Cluster Management for Kubernetes

Robust. Proven. Award winning.

Multicluster lifecycle management

Policy driven governance, risk, and compliance

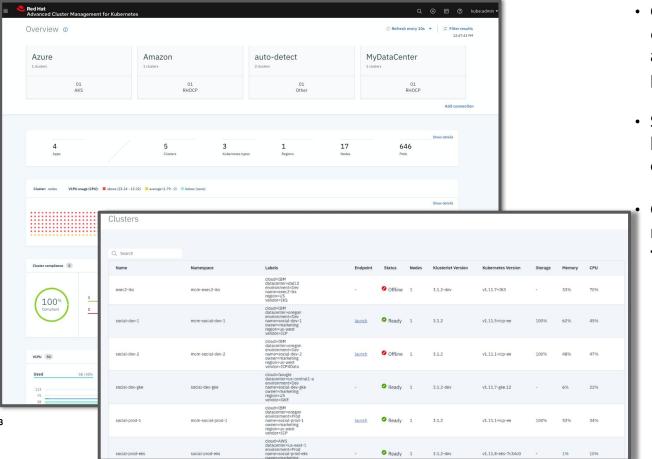
Advanced application lifecycle management

IT Operations

- How can I manage the lifecycle of multiple clusters regardless of where they reside using a single control plane?
- How can I quickly get to the root cause of failed components?
- ► How do I monitor usage across multiple clouds?

Key personas

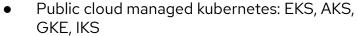
SRE/DevOps


- How do I get a simplified understanding of my cluster health and the impact on my application availability?
- How do I automate: provisioning/deprovisioning of my clusters, the placement of workloads based on capacity and policy, and the pushing of application updates from dev to prod?

SecOps

- ► How do I ensure all my clusters are compliant with my defined policies?
- How do I set consistent security policies across diverse environments and ensure enforcement?
- How do I get alerted on any configuration drift and remediate it?

Unified Multi-Cluster Management

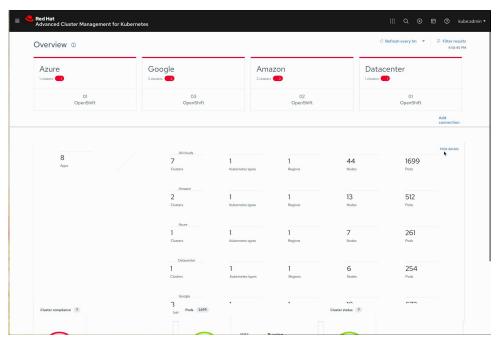

Single Pane for all your Kubernetes Clusters

- Centrally create, update and delete Kubernetes clusters across multiple private and public clouds
- Search, find and modify any kubernetes resource across the entire domain.
 - **Quickly** troubleshoot and resolve issues across your **federated** domain

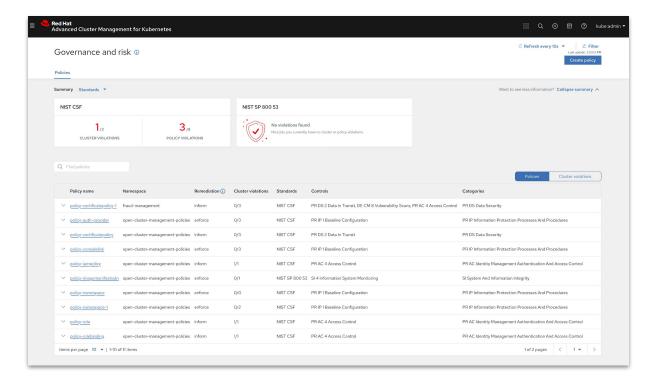
Overview

- Full Management of OCP Kubernetes
 - o OpenShift 3.11, 4.1.x 4.5.x
 - Public cloud hosted: OCP

- Search, find and modify kubernetes resources.
- See high level summaries across all clusters
 - Misconfiguration
 - Pod status
 - Resource capacity
- Troubleshoot and resolve issues across the federated domain
 - See in dashboard or via a list/table form
 - Table shows custom tagging
 - Regions
 - Business Purpose
 - Version



IT Operations


DevOps/SRE

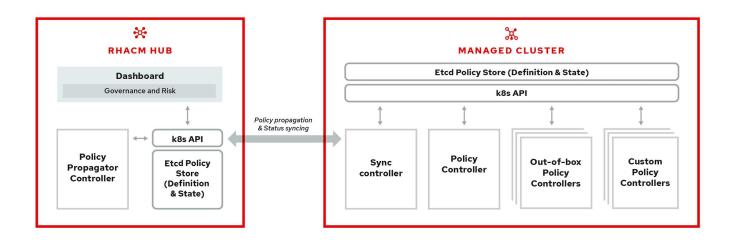
Policy based Governance, Risk and Compliance

Don't wait for your security team to tap you on the shoulder

- Centrally set & enforce policies for security, applications, & infrastructure
- https://github.com/open-clust er-management/policy-collecti on
- Quickly visualize detailed auditing on configuration of apps and clusters
- Built-in CIS compliance policies and audit checks
- Immediate visibility into your compliance posture based on your defined standards

Policy Driven Governance Risk and Compliance

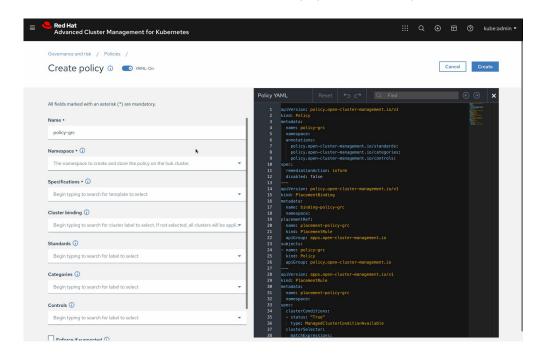
Architecture Overview

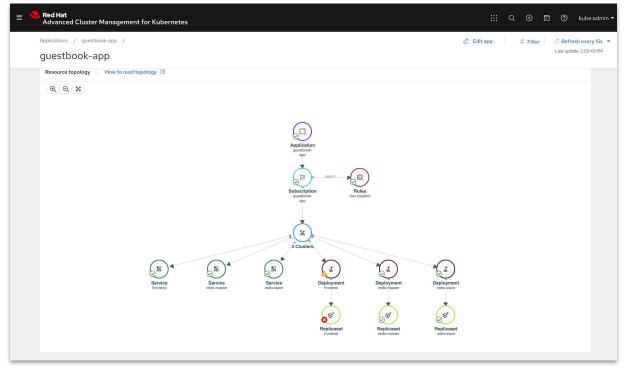

Managed Cluster and GRC Controllers

- Driven by Kubernetes CRDs and controllers
- Governance capability for managed clusters covering both security and configuration aspects.
- Out of box policies and an extensible policy framework

Policy based Governance, Risk and Compliance

Don't wait for your security team to tap you on the shoulder


- Standard Policies out of the box
 - FISMA
 - HIPAA
 - NIST
 - PCI
- Leverage Different
 Categories to Represent
 more standards (if Needed)
- Use Labels to enforce policies against clusters
- Use **inform** to view policy violations
- Use enforce to view violations and automatically remediate

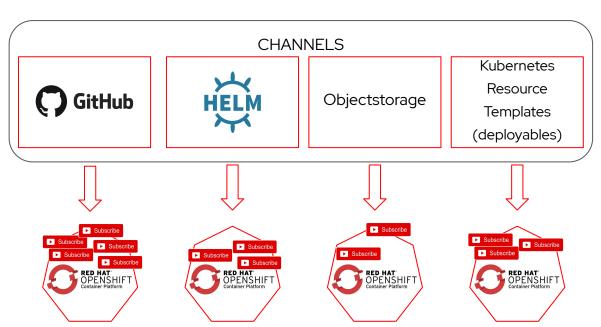

Security Ops

IT Operations

Simplify your Application Lifecycle

- Easily Deploy Applications at Scale
- Deploy Applications from Multiple Sources
- Quickly visualize application relationships across clusters and those that span clusters

Subscriptions Bring Enterprise to Kubernetes



IT Operations

DevOps/SRE

- Extending the best of Enterprise into a desired state methodology
- Time Windows: New releases during your maintenance windows
- Rolling Updates: Control the rate
 and load on your growing
 infrastructure

Benefits

Red Hat OpenShift and Red Hat Advanced Cluster Management for

Kubernetes

Accelerate development to production

Self-service provisioning allows app dev teams to request clusters directly from a catalog removing central IT as a bottleneck.

Increase application availability

Placement rules can allow quick deployment of clusters across distributed locations for availability, capacity, and security reasons.

Reduce costs

Centralized management of clusters reduces operational cost, makes the environment consistent, and removes the need to manually manage individual clusters.

Ease compliance

Policies can be written by the security team and enforced at each cluster, allowing environments to conform to your policy.

Detailed Use Cases

IT Operations

How do I get a simplified understanding of my cluster health and the impact it may have on my application availability?

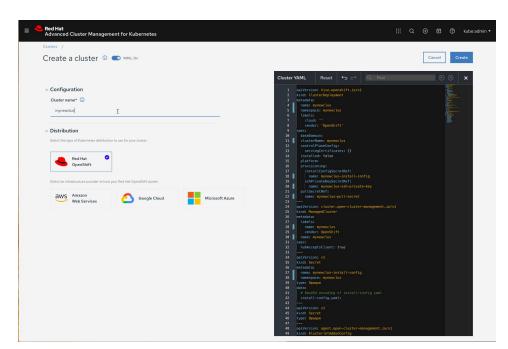
How do I automate provisioning and deprovisioning of my clusters?

DevOps/SRE

How can I manage the life cycle of multiple clusters regardless of where they reside (on-prem, across public clouds) using a single control plane?

Creating & Importing Clusters

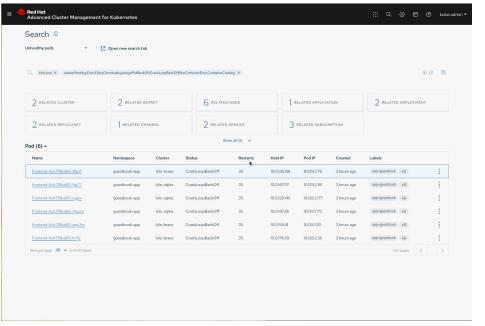
- Create, Upgrade and Destroy OCP clusters running on Bare-metal as well as public cloud
- Leverage <u>Hive API for OCP cluster</u> <u>deployment</u>
- Wizard or YAML based create cluster flow
- Launch to an OCP Console from ACM
- Access cluster login credentials and download kubeadmin configuration



IT Operations

DevOps/SRE

Dynamic Search



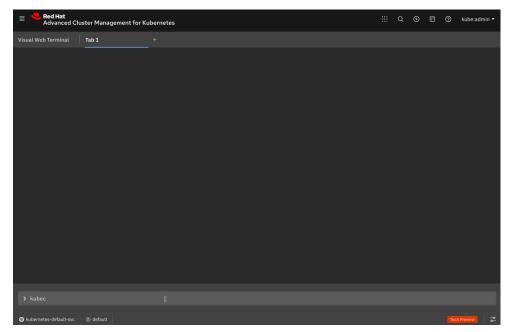
IT Operations

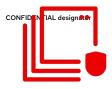
DevOps/SRE

- Troubleshooting across clusters via relationships
- See all **unhealthy** pods
- See related application models to those pods
- See related Persistent Volumes
- See related secrets
- See related *any* kube resource object category

Multi-Cluster Lifecycle Management Visual Web Terminal

- Interactive terminal combines command input with visual output
- One **Terminal** for **all**
- Works with helm, kubectl, oc, istioctl
- Single interface for multi-cluster
- Drive ops directly from dashboards
- Bash commands allow for grep




IT Operations

DevOps/SRE

Policy Driven Governance Risk and Compliance

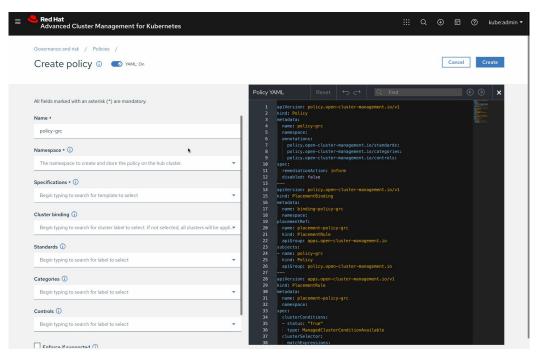
- How do I ensure all my clusters are compliant with standard and custom policies?
- How do I set consistent security policies across diverse environments and ensure enforcement?
- How do I get alerted on any configuration drift and remediate it?

IT Operations

- How do I ensure 99.9 % Uptime?
- How do I drive more innovation at scale?

Policy based Governance, Risk and Compliance

Don't wait for your security team to tap you on the shoulder



Security Ops

IT Operations

- Set and enforce policies for security, applications, & infrastructure
- Deep visibility for auditing configuration of apps and clusters
- Unique policy capabilities around CIS compliance
- Categorize violations based on your standards for immediate visibility into your compliance posture

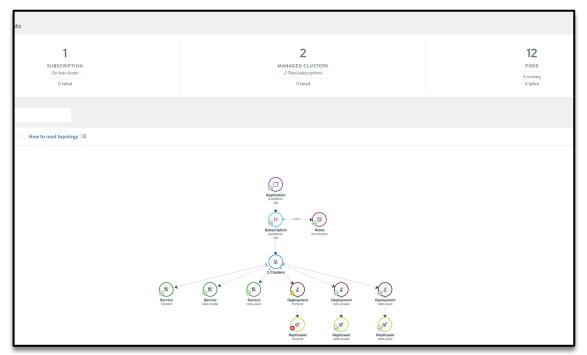
DevOps/SRE

- I want to quickly investigate application relationships with real time status, so that I can see where problems are.
- With the Application Topology view, I can visually inspect application status labels and pod logs to understand if a part of the application is running or not, without having to connect to a cluster and gather any info.

IT Operations

- I want new clusters to be deployed with a set of known configurations and required applications.
- With the assignment of a label at cluster deploy time, the necessary configurations and applications will be automatically deployed and running without any additional manual effort.

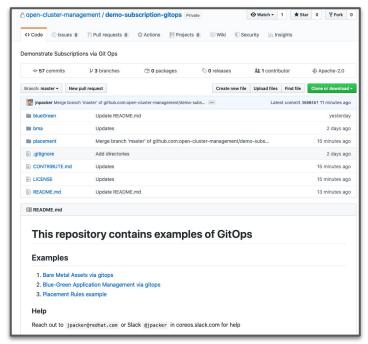
Simplify your Application Lifecycle

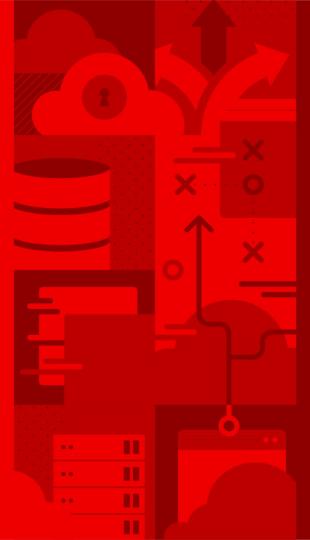

- Deploy Applications at Scale
- Deploy Applications from Multiple Sources and Clusters
- Quickly Visualize Application Relationships
- Using the subscription & channel model, the latest application revisions are delivered to appropriate clusters, automatically.

IT Operations

DevOps/SRE

GitOps as the source of truth

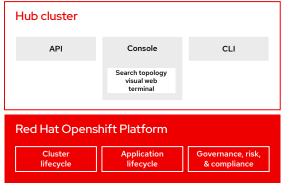

- Create, modify & delete, just as you would any source code. Git becomes your source of truth controlling your data center.
- Have a record of who, what & when for every change precipitated in your environments
- Through code Reviews & Approvals, take full control of all changes to your data center(s)
- Restore your environment, via the Git commit history (system of record)


IT Operations

DevOps/SRE

https://github.com/open-cluster-management/demo-subscription-gitops

Architecture


Red Hat Advanced Cluster Management For Kubernetes

Architecture overview

IT Operations

32

Hub architecture and components

Red Hat Advanced Cluster Management uses the multicluster-hub operator and runs in the open-cluster-management namespace

Managed cluster architecture and components

Red Hat Advanced Cluster Management managed clusters use the multicluster-endpoint operator which runs in the multicluster-endpoint namespace

Demo

