
A whole new class of
security vulnerabilities:

Greg Scott – gscott@redhat.com

2

Agenda

• Give credit where credit is due

• Bug hunting – why is this important?

• Ingredients

• The exploits

• The bad news – there are no simple fixes

• What the industry is doing about it

• What we can do about it

3

Give credit where credit is due
• Collaboration at its best - see https://meltdownattack.com/

• Three teams independently discovered and reported Meltdown:

• Jann Horn (Google Project Zero),

• Werner Haas, Thomas Prescher (Cyberus Technology),

• Daniel Gruss, Moritz Lipp, Stefan Mangard, Michael Schwarz (
Graz University of Technology)

• Two people independently discovered and reported Spectre:

• Jann Horn (Google Project Zero) and Paul Kocher in collaboration with, in
alphabetical order, Daniel Genkin (University of Pennsylvania and
University of Maryland), Mike Hamburg (Rambus), Moritz Lipp (
Graz University of Technology), and Yuval Yarom (University of Adelaide and
Data61)

https://meltdownattack.com/
https://twitter.com/tehjh
https://googleprojectzero.blogspot.com/
mailto:werner.haas@cyberus-technology.de
mailto:thomas.prescher@cyberus-technology.de
mailto:thomas.prescher@cyberus-technology.de
https://www.cyberus-technology.de/
https://www.cyberus-technology.de/
https://gruss.cc/
https://gruss.cc/
https://mlq.me/
https://mlq.me/
https://www.iaik.tugraz.at/content/about_iaik/people/mangard_stefan/
https://www.iaik.tugraz.at/content/about_iaik/people/mangard_stefan/
https://misc0110.net/
https://www.iaik.tugraz.at/
https://twitter.com/tehjh
https://googleprojectzero.blogspot.com/
https://paulkocher.com/
https://www.cis.upenn.edu/~danielg3/
https://www.cis.upenn.edu/~danielg3/
https://www.upenn.edu/
https://www.umd.edu/
https://www.shiftleft.org/
https://www.rambus.com/
https://mlq.me/
https://mlq.me/
https://www.iaik.tugraz.at/
https://cs.adelaide.edu.au/~yval
https://cs.adelaide.edu.au/~yval
https://www.adelaide.edu.au/
https://www.data61.csiro.au/

4

More credit

• First reported to Intel and other chip makers June 1, 2017

• That led to a mad scramble behind the scenes to address it.

• Went public Jan. 3, 2018, one week earlier than planned, after an
article appeared in The Register.

• And that led to another mad scramble to get the updates out.

• See this article from Wired Magazine (Andy Greenburg, Jan. 7, 2018)
for a great writeup on how researchers pieced it together:
https://www.wired.com/story/meltdown-spectre-bug-collision-intel-ch
ip-flaw-discovery/

https://www.wired.com/story/meltdown-spectre-bug-collision-intel-chip-flaw-discovery/
https://www.wired.com/story/meltdown-spectre-bug-collision-intel-chip-flaw-discovery/

5

Why is this important and why
should we care?

Because every modern computer
chip has the problem.

6

Which means every modern computer
device is vulnerable

7

Ingredients – cache

RAM sockets

CPU sockets

8

Why is cache a big deal?

• 1 sec = 1000 ms

• 1 ms = 1000 usec (10^6 usec in a second.)

• 1 usec = 1000 ns (10^9 ns in a second.)

• A L1 cache reference takes around 0.5 ns. An L2 reference is about 7
ns. Let’s just average it out to, say, 3 ns.

• A main memory reference takes around 100 ns.

• Pretend my 3 ns cache round trip is one minute; this means my main
memory round trip takes about ½ hour.

9

Ingredients – firmware and microcode

BIOS chip

10

Ingredients- concurrency

11

Ingredients – prefetching and pipelining

12

Ingredients – speculative execution

13

Putting it together
• Isolation is a bedrock computer security concept. It means no process should be

able to look inside another process or the kernel without following strict
interface rules.

• But speculative execution doesn’t follow the rules.

• Speculatively execute a sequence of machine instructions to access memory
you’re not supposed to touch.

• Once the speculation proves to be wrong, the microcode is supposed to restore
state back the way it was.

• And it does… except for the cache.

• A little bit of clever, non-privileged code breaks isolation and destroys civilization.

• And this bug has been in nearly all computer chips since around 1995.

14

The exploits we know about as of
early 2018
• Spectre variant 1 known as Bounds Check Bypass, CVE-2017-5753

• Spectre variant 2, known as Branch Target Injection, CVE-2017-5715

• Meltdown – variant 3, Rogue Data Cache Load, CVE-2017-5754

See
https://meltdownattack.com/

15

Meltdown – variant 3, Rogue Data
Cache Load, CVE-2017-5754
• Every user thinks they own the whole machine.

• The OS depends on hardware to enforce permissions.

• I want to read an address in kernel space I’m not supposed to see.

• The system executes the instruction ahead of time so it’s ready when my program
gets to it. Regardless of whether I have permission or not.

• If this turns out to be an illegal address, my program takes an exception and the
hardware microcode restores its state.

• All except the cache.

• I flush the cache, and now main memory and the cache agree.

• Easiest to exploit, easiest to fix

16

Meltdown mitigation

• Don’t depend on hardware to enforce memory page permissions; do
it with software in the kernel.

• Separate kernel and user page tables; take a context switch when
looking at kernel pages.

• Take a 5 to 30 percent performance hit when accessing kernel pages.

• This was in the first wave of patches from January, 2018.

17

Spectre variant 1, Bounds Check Bypass, CVE-2017-5753

• Write a program to call a function in the kernel that looks like this:

if (x < array1_size)

y = array2[array1[x] * 256];

• Pick an out-of-bounds value for x, call the function, and it will return
without running the second line.

• But the microcode will speculatively execute that second line and
leave a legacy of it in the cache.

• Hard to exploit because I need to find a value for x that points to the
secret I want.

18

Spectre variant 2, Branch Target Injection, CVE-2017-5715

• Indirect branches – look at the contents of a location and jump to the
address in the contents, not the location itself.

• Example - return from a subroutine (ret); pops a value from the stack
and jumps to that location.

• The attack poisons an indirect branch, executes the indirect branch
speculatively, leaving its legacy in the cache.

• Even more tricky to do because it needs to be tailored for individual
systems.

• No known attacks exist in the real world

19

Spectre mitigation

• Much of this needs to be in microcode.

• Retpoline (return trampoline) – change a ret instruction to a series of
instructions to pop values off the stack and populate the program
counter.

• Compilers also need an update.

• This is major kernel and compiler surgery.

20

The bad news – there are no simple fixes
• Every mitigation so far

has been a workaround.

• And they all come with
a performance tradeoff.

• For now - either cripple
some of the chip
optimizations or accept
the security risk.

21

What the industry is doing about it

• Intel tried to rush a microcode update in early January, 2018. That
didn’t work out so well.

• Lots of kernel developers and chip architects continue to burn lots of
midnight oil developing workarounds.

• This is not an Apple vs. Microsoft, or Android vs. Apple, or Linux vs.
Windows, or VMware vs. Hyper-V vs. RHV fight.

• It’s an industry-wide problem and we’re all in this together – chip,
system, software, and service vendors, security researchers, and end
user customers.

22

The most important thing we can do

23

More we can do

• If it connects to the Internet, make sure it has a provision for updates.
And a commitment from the vendor to provide them for a long time.

• It will take years to cycle through current hardware generations and
fix this in silicone. Expect more workarounds and difficult patching
tradeoffs.

24

25

Red Hat notes as of March 21, 2018

• Red Hat labeled these vulnerabilities as important, not critical.

• Retpoline RHEL 7 kernels delivered March 6.

• Retpoline RHEL 6 kernels delivered March 13.

• RHEL5.11 and 5.9z retpoline packages are built and undergoing QA now. Target availability date is
early April.

26

If you do this…

27

Sooner or later, you’ll end up like
this.

28

For more information, see:
• https://meltdownattack.com/ - has an FAQ and links to the original academic

papers.

• https://www.youtube.com/watch?v=zuBw1HFJMsM – Stanford University,
EE380: Computer Systems Colloquium Seminar Exploiting modern
microarchitectures: Meltdown, Spectre, and other hardware attacks Speaker:
Jon Masters, Redhat.

• https://www.youtube.com/watch?v=2kCDPCgjlJ4&t=3s – Jon Masters’ at
Fosdem 2018, Exploiting modern microarchitectures Meltdown, Spectre, and
other hardware attacks

• https://access.redhat.com/security/vulnerabilities/speculativeexecution - Red
Hat article with links to several specific articles.

https://meltdownattack.com/
https://www.youtube.com/watch?v=zuBw1HFJMsM
https://www.youtube.com/watch?v=2kCDPCgjlJ4&t=3s
https://access.redhat.com/security/vulnerabilities/speculativeexecution

	Slide 1
	Agenda
	Give credit where credit is due
	More credit
	Why is this important and why should we care?
	Which means every modern computer device is vulnerable
	Slide 7
	Slide 8
	Ingredients – microcode and cache
	Ingredients- concurrency
	Ingredients – prefetching and pipelining
	Ingredients – speculative execution
	Putting it together
	The exploits we know about as of early 2018
	Meltdown – variant 3, Rogue Data Cache Load, CVE-2017-5754
	Meltdown mitigation
	Spectre variant 1, Bounds Check Bypass, CVE-2017-5753
	Spectre variant 2, Branch Target Injection, CVE-2017-5715
	Spectre mitigation
	The bad news – there are no simple fixes
	What the industry is doing about it
	The most important thing we can do
	More we can do
	Slide 24
	Slide 25
	If you do this…
	Sooner or later, you’ll end up like this.
	For more information, see:

