

### STORAGE FOR OPENSHIFT CONTAINERS feat. RED HAT GLUSTER STORAGE

Shawn Houston Cloud Storage Solutions Architect

# **LINUX CONTAINERS:**

Software packaging concept that typically includes an application and all of its runtime dependencies



### **BENEFITS**

- **HIGHER** quality software releases
- SHORTER test cycles
- EASIER application management



# **CONTAINERS V.S. VIRTUALIZATION**



### Containers

- Abstracts OS Kernel
  - Limited to Linux
- One CPU and memory mgr
  - Up in seconds
  - 100s or 1000s
- Multiple copies of single app



- Abstracts entire device
- Two CPU and memory mgrs
  - Up in hours or days



### Virtualization

• Any Operating System

- 10s or 100s
- Multiple apps



# WHY PERSISTENT STORAGE FOR CONTAINERS?

"For which workloads or application use cases have you used/do you anticipate to use containers?"



Base: 194 IT operations and development decision-makers at enterprise in APAC, EMEA, and North America Source: A commissioned study conducted by Forrester Consulting on behalf of Red Hat, January 2015



## THE ROAD TO STORAGE AS A SERVICE

| Development<br>Model | Application<br>Architecture                                       | Deployment &<br>Packaging |
|----------------------|-------------------------------------------------------------------|---------------------------|
|                      | © @ @<br>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | ·· II                     |
| لے<br>Waterfall      | Monolithic                                                        | Bare Metal                |
|                      |                                                                   |                           |
|                      |                                                                   |                           |
| Agile                | N-tier                                                            | Virtual Servers           |
|                      |                                                                   |                           |
|                      |                                                                   |                           |
| DevOps               | MicroServices                                                     | Containers                |

#### Application Infrastructure



Data Center





Hosted





Hybrid Cloud

#### Storage



Scale Up





Scale Out





Storage as a Service



## STORAGE INNOVATION FOR CONTAINERIZED APPLICATIONS



#### AUTOMATED CONFIGURATION

### SINGLE CONTROL PANEL

### CHOICE OF PERSISTENT STORAGE



## **CONTAINER READY STORAGE**



### 🥵 redhat.

# **CONTAINERIZED RED HAT GLUSTER STORAGE**







### Lower TCO

### **Unified Orchestration**

### Ease of Use

### **Greater control**



# THE RED HAT STACK – FROM PAAS TO STORAGE













# DRIVING THE FUTURE OF STORAGE

#### **CONTAINER READY STORAGE**

#### **RED HAT**° GLUSTER STORAGE

### Nov 2015

- Dedicated storage cluster for containerized and PaaS environments
- Supported for OpenShift Enterprise

#### **CONTAINERIZED RHGS**



### Mar 2016

- Containerized Red Hat Gluster Storage serving storage from a dedicated storage cluster
- Optimized for applications running on RHEL 7, OpenShift Enterprise, and RHEL Container Host

#### CONVERGENCE OF STORAGE AND COMPUTE

#### **CONTAINER-NATIVE STORAGE**



### Summer 2016

- Containerized Red Hat Gluster Storage inside
   OpenShift Container Platform hyper converged
   with application containers
- Red Hat Gluster Storage cluster comprised of disks from multiple container cluster nodes



## **RED HAT GLUSTER STORAGE ADVANTAGES**

**OPEN** Open, software-defined distributed file and object storage system

SCALABLE No Metadata Server

ACCESSIBLE Multi-Protocol the Same Data

**ALWAYS-ON** High-Availability across data, systems and applications

MODULAR

**No Kernel Dependencies** 

• Synchronous replication with self-healing for s

• Asynchronous geo-replication for site failure

| <ul> <li>Based on GlusterFS open source community project</li> <li>Uses proven local file system (XFS)</li> <li>Data is stored in native format</li> </ul>                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Uses an elastic hashing algorithm for data placement</li> <li>Uses local filesystem's xattrs to store metadata</li> <li>Nothing shared scale-out architecture</li> </ul>     |
| <ul> <li>Global name space</li> <li>NFS, SMB, object, HDFS, Gluster native protocol</li> <li>Posix compliant</li> </ul>                                                               |
| <ul> <li>GlusterFS is based on filesystem in userspace (FUSE)</li> <li>Modular stackable arch allows easy addition of featureswithout being tied to any kernel versioniant</li> </ul> |
| • Synchronous replication with self-healing for server failure                                                                                                                        |



## **HOW IS GLUSTER DEPLOYED?**





### DATA PLACEMENT BEST PRACTICE

Distributed-Replicated Volume





### DATA PLACEMENT FOR CONTAINER NATIVE

Replicated Volume





## **GlusterFS NATIVE CLIENT**

- BASED ON FUSE KERNEL MODULE, which allows the file system to operate entirely in userspace
- **SPECIFY MOUNT** to any GlusterFS server
- NATIVE CLIENT fetches volfile from mount server, then communicates directly with all nodes to access data

Load inherently balanced across distributed volumes Recommended for high concurrency & high write performance



# **A PEEK OVER THE HORIZON**

**Community Innovation** 

**.**...

Storage as a Microservice ---





### redhattechnicalseries.com/storage

### **Storage Communities**









# THANK YOU



plus.google.com/+RedHat



linkedin.com/company/red-hat



youtube.com/user/RedHatVideos



Y

facebook.com/redhatinc

twitter.com/RedHatNews

