
Containers at Scale – Kubernetes
and Docker

Michael Heldebrant
Cloud Infrastructure Solutions Architect
Red Hat
January 2015

AGENDA

● What is Kubernetes

● Why Kubernetes?

● Kubernetes concepts

● Kubernetes networking

● Patch cycle with Kubernetes

● OpenShift 3.0 roadmap

Kubernetes?

Hortator (inciter; encourager, exhorter; urger):

Kubernetes:

6

What is Kubernetes

● June 2014 Google open sourced a container
management project

● Google has been using containers for over a
decade

● Red Hat is collaborating in the kubernetes
project

http://www.redhat.com/en/about/blog/red-hat-and-google-collaborate-kubernetes-manage-
docker-containers-scale

7

Why Kubernetes?

Docker is an engine, container and image format with limited networking
between hosts.*

Kubernetes is a way to:
● describe and launch
● monitor state and maintain, increase or reduce copies of containers
● container oriented networking for non kubernetes native applications

Kubernetes builds on Docker to make management of many containers
like managing containers on a single system.

*prior to recent Docker roadmap annoucements

8

Kubernetes Concepts

● Pods
● Collection of co-located containers with a unique ip address

● Connect containers in the pod to each other via localhost networking

● Shared volume(s)

● Labels for Replication Controllers and Services to select

9

Kubernetes Concepts

● Replication Controllers
● Keep N copies of a pod running or update N

● Pod templates describe the pod to manage

● Services
● Stable IP and ports for connecting pods together across a cluster of

container hosts

● Services are long lived compared to Pods

10

Kubernetes Concepts

● Labels
● Key Value pairs attached to primitives (pods, rep. controllers, services)

● Labels are not meant to be unique

● Labels are used by replication controllers and services to match pods

– key1

– key1 = value11

– key1 != value11

– key1 in (value11, value12, ...)

– key1 not in (value11, value12, ...)
● Use multiple key-value pairs to cross cut the set to select

11

Kubernetes Architecture
● Master

● kube-apiserver – interface between users and kubernetes

● kube-controller-manager – monitors replication controllers and
adds/removes pods to reach desired state

● kube-scheduler – schedules pods to minions

● etcd – key value store over HTTP

● Minions
● kublet – node level pod management

● proxy – forward traffic to pods

● cadvisor – resource monitor

● docker – engine for containers

12

Kubernetes Supporting Infrastructure
● Docker images

● Docker factory to build images

● Docker image management
● Docker-registry

● Load balancers
● HA-proxy or equivalent to route traffic external to the cluster to minions

13

5 minute Docker crash course
● Docker build host

● yum --enablerepo rhel-7-server-extras-rpms install docker

● add –insecure-registry=registry-host:5000 to /etc/sysconfig/docker OPTIONS line

● systemctl start docker

● Docker images

● Red Hat base os images: https://access.redhat.com/search/browse/container-images

● docker load -i rhel-server-docker-7.0-*.tar.gz

● docker tag rhel-server-docker-7.0-23.x86_64 rhel7

● Create Dockerfile to build and run a simple application (apache httpd)
FROM rhel7

MAINTAINER Michael Heldebrant mheldebr@redhat.com

Install httpd

RUN yum -y install httpd && yum clean all

Set up apache to run

ENTRYPOINT ["/usr/sbin/httpd", "-DFOREGROUND"]

https://access.redhat.com/search/browse/container-images

14

5 minute Docker crash course
● Docker registry for testing

● docker run -d -p 5000:5000 -e STORAGE=local -e STORAGE_PATH=/tmp/ --name=registry registry

● Build images

● cd dockerfiledirectory

● docker build -t registry-host:5000/httpd:latest .

● Push images

● docker push registry-host:5000/httpd:latest

15

10 minute Kubernetes install
● https://access.redhat.com/articles/1198103#start

● Install on master and minions

– yum --enablerepo rhel-atomic-host-beta-rpms --enablerepo rhel-7-server-extras-rpms
install kubernetes

● Edit the config files in /etc/kubernetes and start services on master

– for SERVICES in docker etcd kube-apiserver kube-controller-manager kube-
scheduler; do systemctl restart $SERVICES;systemctl enable $SERVICES;systemctl
status $SERVICES; done

● Edit the config files in /etc/kubernetes/ and start services on minions

– for SERVICES in docker kube-proxy.service kubelet.service; do systemctl restart
$SERVICES; systemctl enable $SERVICES; systemctl status $SERVICES; done

https://access.redhat.com/articles/1198103#start

16

Using Kubernetes
● kubectl

● Ask for information

– kubectl get minions #or pods, services, replicationcontrollers

– kubectl describe pod name

● Create primitives

– kubectl create -f yaml-or-json-information

● Update primitives

– kubectl update -f yaml-or-json-information

17

Service example
File httpd-service:

{

 "id": "httpd",

 "kind": "Service",

 "apiVersion": "v1beta1",

 "selector": {

 "name": "httpd"

 },

 "containerPort": 80,

 "protocol": "TCP",

 "port": 80

}

18

services
kubectl create -f httpd-service

httpd-service

kubectl get service

NAME LABELS SELECTOR IP PORT

httpd name=httpd 10.254.0.1 80

19

Pod example

{

"kind": "Pod","apiVersion": "v1beta1","id": "httpd",

 "labels": {"name": "httpd"},

 "desiredState": {"manifest": {

 "version": "v1beta1","id": "httpd","volumes": null,

 "containers": [{ "name": "master","image":"registry-host:5000/httpd:latest",

 "ports": [{ "containerPort": 80,"hostPort": 80,"protocol": "TCP" }],

 }],

 "restartPolicy": { "always": {} }

 }, },

}

20

pod
kubectl get pods

NAME IMAGE(S) HOST LABELS
 STATUS

docker-registry registry:latest rhel7-02.localdomain/ name=docker-registry
 Running

httpd registry-host/httpd:latest rhel7-02.localdomain/ name=httpd
 Waiting

##Time Passes

kubectl get pods

NAME IMAGE(S) HOST LABELS
 STATUS

docker-registry registry:latest rhel7-02.localdomain/ name=docker-registry
 Running

httpd registry-host/httpd:latest rhel7-02.localdomain/ name=httpd
 Running

21

Replication controller
{"id": "httpdController","kind": "ReplicationController","apiVersion": "v1beta1",

 "desiredState": {"replicas": 3,"replicaSelector": {"name": "httpd"},

 "podTemplate": {"desiredState": {

 "manifest": {

 "version": "v1beta1","id": "httpd",

 "containers": [{

 "name": "httpd","image": "registry-host:5000/httpd:latest",

 "ports": [{"containerPort": 80, "hostPort": 80}]

 }]

 }

 },"labels": {"name": "httpd",} }

 },

 "labels": {"name": "httpdController"}

}

22

Replication controller
kubectl get replicationcontrollers

NAME IMAGE(S) SELECTOR REPLICAS

httpdController rhel7.your.com/httpd:latest name=httpd 3

kubectl get pods

NAME IMAGE(S)

 HOST LABELS STATUS

docker-registry registry:latest

 rhel7-02.localdomain/ name=docker-registry Running

httpd 10.254.0.2:5000/httpd:latest

 rhel7-02.localdomain/ name=httpd Running

7e8c6f48-9ada-11e4-b1e5-fa163ef2f051 10.254.0.2:5000/httpd:latest

 rhel7-01.localdomain/ name=httpd Running

7e8c8d72-9ada-11e4-b1e5-fa163ef2f051 10.254.0.2:5000/httpd:latest

 <unassigned> name=httpd Waiting

23

Replication controller
kubectl describe replicationcontrollers httpdController

Name: httpdController

Image(s): 10.254.0.2:5000/httpd:latest

Selector: name=httpd

Labels: name=httpdController

Replicas: 3 current / 3 desired

Pods Status: 2 Running / 1 Waiting / 0 Terminated

kubectl describe pod httpd

Name: httpd

Image(s): 10.254.0.2:5000/httpd:latest

Host: rhel7-02.localdomain/

Labels: name=httpd

Status: Running

Replication Controllers: httpdController (3/3 replicas created)

24

The application is deployed
curl 10.254.0.3 # <-httpd service or a specific pod-> 10.20.2.5

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

<head>

<title>Test Page for the Apache HTTP Server on Red Hat Enterprise Linux</title>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<style type="text/css">

25

Kubernetes environment variables
kubernetes and docker-links style environment variables

"Env": [

 "STORAGE=local",

 "STORAGE_PATH=/var/lib/docker-registry",

 "DOCKER_REGISTRY_SERVICE_HOST=10.254.0.1",

 "DOCKER_REGISTRY_SERVICE_PORT=5000",

 "DOCKER_REGISTRY_PORT=tcp://10.254.0.1:5000",

 "DOCKER_REGISTRY_PORT_5000_TCP=tcp://10.254.0.1:5000",

 "DOCKER_REGISTRY_PORT_5000_TCP_PROTO=tcp",

 "DOCKER_REGISTRY_PORT_5000_TCP_PORT=5000",

 "DOCKER_REGISTRY_PORT_5000_TCP_ADDR=10.254.0.1",

 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",

 "DOCKER_REGISTRY_CONFIG=/docker-registry/config/config_sample.yml",

 "SETTINGS_FLAVOR=dev"

],

26

Use Kubernetes environment variables
Use the kubernetes and docker-links style environment variables as
part of the startup script or commands for multi-tier applications.

● Build up the config file in a startup script for the platform in the
container

● Directly call environment variables in the startup command

27

Kubernetes network concepts
● Every pod is given an ip address to avoid collisions in ports

● Every pod can talk to every other pod in the container network

● Service ips are used to make more persistent connections as pods
come and go

● Service ips are iptables rules to route traffic on hosts running kube-
proxy and on the layer 2 container network

● External ip addresses can also be specified for services so that
external hosts to the container network can route to the
containers. These are where port collisions can still occur on the
“public” ip of the container host.

28

Kubernetes network topology
For my lab example:
Using a vxlan tunnel overlay network for
 minions and controller
3 normal network devices + 12 virtual network devices
 + 2 x running containers network devices

Running as openstack instances
Using openstack neutron for private network
 and public ip routing to instances

NET-CEPTION:

containers connect to peer interfaces connected...
 to peer interfaces on the docker bridge ...
 connected to an openvswitch ...
 with a mesh of vxlan tunnels to the private ips

29

Kubernetes network topology

30

Kubernetes network example
10.20.0.0/16 is allocated for the container network

Create linux bridge docker0 manually and assign 10.20.1.1/16 on the first host

 brctl addbr docker0 #create a bridge with a real “fake” mac

 brctl stp docker0 on #turn on spanning tree to prevent loops

 ip addr add 10.20.1.1/16 dev docker0 #give the bridge an ip address

 ifconfig docker0 mtu public-50 #adjust mtu for the tunnel overhead of vxlan

Docker takes a /24 within the /16 and uses the existing docker0 bridge:

Add to /etc/sysconfig/docker OPTIONS line:

 --fixed-cidr=10.20.1.1/24 --bridge=docker0

31

Kubernetes network example

Create an openvswitch vxlan mesh network via tunnels between hosts via the openstack private ip

 ovs-vsctl add-br br0

 ovs-vsctl add-port br0 gre0 -- set interface vxlan0 type=vxlan options:remote_ip=192.168.38.8

 ovs-vsctl add-port br0 gre0 -- set interface vxlan1 type=vxlan options:remote_ip=192.168.38.15

Add openvswitch to the docker0 bridge

 brctl addif docker0 br0

Bring it up:

 ifconfig br0 mtu public-50 #adjust mtu for the tunnel overhead of vxlan

 ifconfig br0 up #be patient for stp to complete in a few seconds

32

Patch cycle becomes a cutover (Docker)

33

34

35

Kubernetes patch cycle
● Replication controller rolling updates

● Replication controller for production – N copies

● Rolling upgrade starts – both replication controllers are selected by the same service

● Replication controller for production – N – 1 copies

● Replication controller for next version of production – 1 copy

● ...Repeat until...

● Upgrade finishes

● Replication controller for production (old) – deleted after 0 copies

● Replication controller for current version in prodution – N copies

36

Is Kubernetes production ready?

Bugs

https://github.com/GoogleCloudPlatform/kubernetes

Kubernetes is in pre-production beta!

While the concepts and architecture in Kubernetes
represent years of experience designing and building large
scale cluster manager at Google, the Kubernetes project is
still under heavy development. Expect bugs, design and
API changes as we bring it to a stable, production product
over the coming year.

https://github.com/GoogleCloudPlatform/kubernetes

37

What’s next?
● Scheduler - Apache Mesos

● Mesos will handle YARN and Kubernetes
jobs to best utilize resources

● You can try it out, as a docker image of
course

● https://github.com/mesosphere/kubernetes-mesos

38

What’s next?
● Greater networking agility

● Flannel (formerly rudder)
● Dynamic assignment of /24 networks
● UDP based overlay network automation
● https://github.com/coreos/flannel

39

RHEL Atomic Beta

● Container Oriented OS based on RHEL7 and
Project Atomic
● Docker and Kubernetes
● All applications are to run in a container

● Atomic updates of the OS
● rpm-ostree

40

OpenShift 3.0 roadmap

● RHEL atomic are the OpenShift nodes
● Overlay network technology TBD

● Image builds via kubernetes
● https://blog.openshift.com/openshift-v3-deep-dive-docker-kubernetes/

● Source-to-Image builds via kubernetes
● https://blog.openshift.com/builds-deployments-services-v3/

41

OpenShift 3.0 architecture

42

OpenShift 3.0 build
Builds a docker image via a dockerfile in a github repo

{

“id”: “build100″,“kind”: “BuildConfig”,“apiVersion”: “v1beta1″,

 “desiredInput”: {

 “type”:“docker”,“sourceURI”: “git://github.com/bparees/openshift3-blog-part1.git”,

 “imageTag”: “openshift/origin-ruby-sample”,“registry”: “127.0.0.1:5001″

 },

 “secret”: “secret101″

}

43

OpenShift 3.0 sti
{

“id”: “ruby-sample-build”,“kind”: “BuildConfig”,“apiVersion”: “v1beta1″,

 “parameters”: {

 “source” : {“type” : “Git”,“git” : {“uri”: “git://github.com/openshift/ruby-hello-world.git”} },

 “strategy”: {“type”: “STI”,“stiStrategy”: {“builderImage”: “openshift/ruby-20-centos”} },

 “output”: { “imageTag”: “openshift/origin-ruby-sample:latest”,“registry”: “172.121.17.1:5001″},

 },

 “secret”: “secret101″,

 “labels”: {“name”: “ruby-sample-build”}

}

	page0
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

