
Integrating RHEL and LDAP/AD
(Users and Groups)

Patrick Mooney
General Mills



Agenda
 Past methods
 Current methods
 Solutions
 Additional considerations
 Wrap-up / Discussion



Static Config (nss_files)
Place entries directly in 
/etc/(passwd|group)

Could be automated with 
config management

 Pros:
 Simple
 Most reliable
 Best support

 Cons:
 Doesn't scale
 Not even with cfg mgmt.



Generated DB (nss_db)
Create BDB file for 
distribution to clients

Query LDAP/AD during 
generation for dynamic 
content

 Pros:
 Reliable
 Fast
 Dynamic (to a degree)

 Cons:
 Custom code needed
 Synced groups still require 

grooming
 Intersection with files



Others (NIS, nss_ldap)
No experience, no detail  Pros:

 Dynamic

 Cons:
 Caching issues
 Schema requirements



SSSD
 Previously covered at RHUG
 Caches locally – no nscd required
 Multi-domain/multi-source support
 Easy setup on domain-joined servers
 Automatic uid/gid translation (with caveats…)



Why isn't SSSD a good solution?
 Non-Linux devices may require stricter schema
 LDAP access issues
 Distributed responsibility for *NIX machines
 Active Directory scope…



Typical example.com LDAP
dn: uid=alice,ou=it-staff,dc=example,dc=com
uid: alice
memberOf: LinuxAdmins
memberOf: IT-Staff
memberOf: Employees
homeDir: /home/alice
userShell: /bin/zsh
uidNumber: 101
gidNumber: 1000



Realistic LDAP
dn: uid=bob,ou=salaried,ou=local,

ou=site,dc=example,dc=com
uid: bob
memberOf: LinuxAdmins
memberOf: Linux-distlist
… 80 groups cut …
memberOf: Domain Users
memberOf: employees-birthday-party-distlist
memberOf: app_license_some-product
objectSid: WW91IHdpbiBhIHByaXplCg==



Realistic LDAP at GMI
 56000 users
 All members of Domain Users
 No acceptable OU boundaries to filter on

 45000 groups
 Many used for purposes other than org-structure (software 

licensing, mailing lists, etc)
 Few have Linux friendly names



Work-arounds
 sssd.conf - ldap_group_search_filter
 Authoring filter is difficult or impossible
 Groups still present, all stay numeric
 Domain Users is always present

 Sync to IDM or openLDAP
 Creates second source of truth
 Syncing can be complicated



Filter on-the-fly
 Must Haves:
 Live data
 Tailored to the specific organization
 Easy for admin/operations staff to maintain

 Avoid:
 Data stored outside of single source of truth
 Complicated caching or syncing



Proxy it (and mangle on the fly)
 Built on ldapjs
 Runs on node.js (available in EPEL6)
 Few alternatives for LDAP server APIs

 openLDAP overlays – written in C
 OpenDJ – written in Java

 Framework not a product
 Abstracts/simplifies the LDAP plumbing
 Requires application-specific setup



Architecture

LDAPJS

SSSD

AD/LDAP

…

Op 2

Op 1

…

Op 2

Op 1

Request

Response



Module Possibilities
 ObjectSID id-mapping (same as SSSD)
 Filter groups based on "complex" logic
 Keep names Linux/UNIX safe
 Prevent from appearing in memberOf/member

 Set shell/homedir based on group membership
 Translate schema on the fly (AD to rfc2307)



Example
var filterChain = new lmp.mangle.Chain()
.chain(new lmp.mangle.Simple(function (out) {

out['cn'] = out['cn'].replace('Bob','Robert');
})) 
.chain(new lmp.mangle.Simple(function (output) {

var match = 'cn=restrict,ou=group,dc=test,dc=com';
var dn = ldap.parseDN(match);
output['memberOf'].forEach(function (group) {

if (dn.equals(group)) {
output['userShell'] = '/bin/lameshell';

}
}); 

})); 



Example (continued…)
var client = ldap.createClient({

url: "ldap://server.test.com:3268",

bindCredentials: "myPassword",

bindDN: "cn=myUser,ou=Users,dc=test,dc=com",

});

var log = bunyan.createLogger({name: 'Example'});

var proxy = new lmp.SearchProxy(client, filterChain, 
log);

var server = ldap.createServer();



Example (continued…)
/* Allow anyone to bind */

server.bind('cn=root', function(req, res, next) {

res.end();

return next();

});

server.search(

'DC=test,DC=com', proxy,  proxy.execute

);

server.listen(1389, '0.0.0.0', function () {

console.log('LDAP server up at: ' +  server.url);

});



Current Status
 The Bad
 Code is still pre-beta
 Collection of modules is small
 Have not performed exhaustive performance testing

 The Good
 Using for an address book pilot
 Planning to use for SSSD soon



Picking UID/GID ranges for ID mapping
 Relative-ID portion of objectSID determines offset
 Too low: overflowing objects will be invisible
 Too high: impedes multi-domain usage
 Get the data…



ObjectSID growth over time



Questions/Feedback



Resources
 ldapjs: github - mcavage/node-ldapjs
 node.js: nodejs.org
 proxy: github - pfmooney/node-ldapjs-mangle-proxy

patrick.mooney@genmills.com


