
Michael Ford
Senior Solutions Architect, Ansible

AUTOMATION FOR NETWORK
INFRASTRUCTURE
IMPROVING AGILITY, SPEED, & PROCESSES
WITH OPEN SOURCE SOLUTIONS

INSERT DESIGNATOR, IF NEEDED

MANAGING NETWORKS
HASN’T CHANGED

IN 30 YEARS.

INSERT DESIGNATOR, IF NEEDED

According to Gartner...

INSERT DESIGNATOR, IF NEEDED

Automation Considerations

● Compute is no longer the slowest link in the chain
● Businesses demand that networks deliver at the speed of cloud
● Automation of repeatable tasks
● Bridge silos

INSERT DESIGNATOR, IF NEEDED

CodeSME

Automation: SME as Code

● Leverages Human Experience
● Reduce Repetition

● Reduce Variability
● Reduce Isolation

INSERT DESIGNATOR, IF NEEDED

Automation: SME as Code

CodeSME

Pla k

Pla k

● Leverages Human Experience
● Reduce Repetition

● Reduce Variability
● Reduce Isolation

INSERT DESIGNATOR, IF NEEDED

PlaybookMethod of Procedure

● Define Intent, Policy, Architecture

● Apply across device type, vendor

1. Create VLAN

2. Add port to VLAN

3. Address Interface

Convert Procedures to Playbooks

INSERT DESIGNATOR, IF NEEDED

DEVELOP

TEST

OPERATE

PLAN

DESIGN

● Revision control, configuration management
● Ensure an ongoing steady-state
● Automated testing, reduce human error

Manage Lifecycle with Process & Playbooks

SOURCE
CONTROL

INSERT DESIGNATOR, IF NEEDED

OPERATIONS

DEVELOPMENT SECURITY

BUSINESS
(ARCHITECTS)

Communicate with Playbooks

INSERT DESIGNATOR, IF NEEDED

Ansible Engine is an automation engine
that runs Ansible Playbooks.

Ansible Tower is an enterprise
framework for controlling, securing
and managing your Ansible
automation with a UI and RESTful API.

Ansible is a simple automation language that can perfectly describe an IT
application infrastructure in Ansible Playbooks.

As a vendor agnostic framework Ansible can automate Arista (EOS), Cisco
(IOS, IOS XR, NX-OS), Juniper (JunOS), Open vSwitch and VyOS.

What is Ansible?

INSERT DESIGNATOR, IF NEEDED

SIMPLE POWERFUL AGENTLESS

Image updates

Configuration management

Compliance

Orchestrate the network lifecycle

Human readable automation

No special coding skills needed

Tasks executed in order

Get productive quickly

Agentless architecture

Uses OpenSSH & WinRM

No agents to exploit or update

More efficient & more secure

Why Ansible?

INSERT DESIGNATOR, IF NEEDED

Abstraction Through Automation

BGP OSPF VLAN ACL QOS EVPN AAALB

The Flexibility of Choice
Business Requirements

INSERT DESIGNATOR, IF NEEDED

● Automate common tasks

● Make changes across any set
of network devices

● Validate that changes were
successful

AUTOMATE
with Red Hat Ansible Engine

● Automated deployment from
Services Catalogue

● Automated compliance
checking & enforcement

● API-Driven Integration with
Application Development

SCALE
with Red Hat Ansible Tower

● Snapshot State

● Detect Unauthorized Change

● Standardize Existing Configs

● Standardize New Deployments

STANDARDIZE
with Red Hat Ansible Engine

Organize the Chaos Optimize your Infrastructure Stop Logging Into Devices

The Road To Automation

#

INSERT DESIGNATOR, IF NEEDED

 Time to Value
Configuration & Change Automation

Faster Customer
Service

On-boarding

Time to Remediation
Automated Fault Remediation

Faster Execution
of Change
Requests

Faster Execution
of Maintenance

Faster
Troubleshooting
and Remediation

Improved Outcomes with Automation

INSERT DESIGNATOR, IF NEEDED

Playbooks & Network Modules

INSERT DESIGNATOR, IF NEEDED16

ANSIBLE’S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

CMDB

USERS

INVENTORY
HOSTS

NETWORKING
PLUGINS

API

MODULES

Under the Hood

INSERT DESIGNATOR, IF NEEDED

NETWORKING
DEVICES

Python code is executed
locally on the control node

Connection Plugins

Control Node

Netconf

API

CLI

LINUX
HOSTS

Python code is copied to
the managed node,
executed, then removed Control Node

SSH

INSERT DESIGNATOR, IF NEEDED18

- hosts: network

 vars:
 site_domain_name: 'example.net'
 network_name_servers:
 - 8.8.8.8
 - 8.8.4.4
 log_host: 10.2.2.3

 tasks:
 - name: Configure the hostname and domain name

 net_system:
 hostname: "{{ inventory_hostname }}"
 domain_name: "{{ site_domain_name }}"
 name_servers: "{{ network_name_servers }}"

 - name: configure host logging
 net_logging:
 dest: host
 name: "{{ log_host }}"

Anatomy of a Playbook

Inventory: The devices to configure

Variables: The key/value pairs that
change from device to device

Tasks: The tasks to perform on
those devices

INSERT DESIGNATOR, IF NEEDED

● Collects facts from
the device

19

command
(e.g. ios_command)

● Executes command
on device

● Provides output for
further processing

config
(e.g. ios_config)

● Manipulates the
config of the device

● Idempotent

facts
(e.g. ios_facts)

Building Blocks

Network Functional Modules

INSERT DESIGNATOR, IF NEEDED

Well Defined, Role Based API

Easily Customizable Back End

Servers

Storage

Networking
{|}

API-Driven Infrastructure

INSERT DESIGNATOR, IF NEEDED

Request

Configure

Use

Deploy
Develop

Plan

Test

Operate

Customers

Operators

SoT

Production
Network

Test
Network

SMEs

OpsDev

API

UI

Automate the Enterprise, not just Humans

INSERT DESIGNATOR, IF NEEDED22

- hosts: network
 gather_facts: no
 connection: local
 tasks:
 - name: show version

 ios_command:
 commands:
 - show version
 wait_for:
 - result[0] contains Version
 register: results

- set_fact:
 ver: "{{ results.stdout[0]|regex_search('Version ([0-9.]+)','\\1') }}"

- debug: var=ver

Network Functional Module: Command

INSERT DESIGNATOR, IF NEEDED

PLAY [network]
**
TASK [show version and show interfaces]
**
ok: [rtr1]

TASK [set_fact]
**
ok: [rtr1]

TASK [debug] ***
ok: [rtr1] => {
 "ver": [
 "16.06.01"
]
}

PLAY RECAP ***
rtr1 : ok=3 changed=0 unreachable=0 failed=0

Network Functional Module: Command

INSERT DESIGNATOR, IF NEEDED24

- hosts: network
 gather_facts: no
 connection: local
 tasks:
 - name: configure hostname
 ios_config:
 lines:
 - "hostname {{ inventory_hostname }}"

Network Functional Module: Config

INSERT DESIGNATOR, IF NEEDED

First Run:
PLAY [network]
**
TASK [configure hostname]
**
changed: [rtr1]

PLAY RECAP
**
rtr1 : ok=1 changed=1 unreachable=0 failed=0

Second Run:
PLAY [network]
**
TASK [configure hostname]
**
ok: [rtr1]

PLAY RECAP
**
rtr1 : ok=1 changed=0 unreachable=0 failed=0

Network Functional Module: Config

INSERT DESIGNATOR, IF NEEDED26

- hosts: network
 connection: local
 gather_facts: False
 tasks:

 - name: Get facts
 ios_facts:
 gather_subset: all

 - debug: msg="Serial Number is {{ ansible_net_serialnum }}"

Network Functional Module: Facts

INSERT DESIGNATOR, IF NEEDED

PLAY [network]
**

TASK [Get facts]
**
ok: [rtr1]

TASK [debug]
**
ok: [rtr1] => {
 "msg": "Serial Number is 9G2OX4MKLVP"
}

PLAY RECAP
**
rtr1 : ok=2 changed=0 unreachable=0 failed=0

Network Functional Module: Facts

INSERT DESIGNATOR, IF NEEDED28

- name: configure the “management” vrf
 eos_vrf:
 name: management
 state: present
 when: ansible_network_os == 'eos'

- name: configure the “management” vrf
 ios_vrf:
 name: management
 description: oob mgmt vrf
 state: present
 when: ansible_network_os == 'ios'

- name: configure the “management” vrf
 nxos_vrf:
 name: management
 description: oob mgmt vrf
 state: present
 when: ansible_network_os == 'nxos'

● Per Platform Implementation

● Focused on managing a resource

● Declarative by design

● Handles complexity

Network Resource Modules

INSERT DESIGNATOR, IF NEEDED

- name: configure network interface

 net_interface

 name: “{{ interface_name }}”

 description: “{{ interface_description }}”

 enabled: yes

 mtu: 9000

 state: up

- name: configure VLAN ID and name

 net_vlan:

 vlan_id: 20

 name: test-vlan - iosxr_interface:

 ...

- iosxr_vlan:

 ...

29

- nxos_interface:

 ...

- nxos_vlan:

 ...

- junos_interface:

 ...

- junos_vlan:

 ...

- eos_interface:

 ...

- eos_vlan:

 ...

- ios_interface:

 ...

- ios_vlan:

 ... Network Resource Modules

INSERT DESIGNATOR, IF NEEDED

- name: configure interface
 net_interface:
 name: GigabitEthernet0/2
 description: public interface configuration
 enabled: yes
 state: connected
 neighbors:
 - host: core-01
 port: Ethernet5/2/6

Declared
Configuration

Intended
State

30

Declarative Intent

INSERT DESIGNATOR, IF NEEDED

- name: Configure VLANs
 net_vlan:
 vlan_id: “{{ item.vlan_id }}”

 name: “{{ item.name }}”

 state: “{{ item.state | default(‘active’)
}}”

 with_items:

 - { vlan_id: 1, name: default }

 - { vlan_id: 2, name: Vl2 }

 - { vlan_id: 3, state: suspend }

31

Aggregate Resources

- name: Configure VLANs and Purge
 net_vlan:
 aggregate:

 - { vlan_id: 1, name: default }

 - { vlan_id: 2, name: Vl2 }

 - { vlan_id: 3, state: suspend }

 state: active

 purge: yes

Loop entries Bulk entries

Multiple Operations Single Operation

Playbooks / Roles

Rigorous Testing

World-Class Support

Roles/Playbooks

Applications Roles

● Focused on addressing operational use cases

● Approved and opinionated methods

● Developed, tested, and distributed by Ansible

● Agile development with gated release process

Connection
Plug-ins

Modules

Community

Network Operators aren’t programmers, need one-stop for “approved” content

Where to obtain playbooks, roles, modules?

Who wrote them?

Are they tested?

Who supports them?

Software Supply Chain

Trusted Distribution:
● Development: GitHub/ansible-network

● Released: Ansible Galaxy

Distributed CI test system

Supported by Red Hat

Supported

INSERT DESIGNATOR, IF NEEDED

Automation for Teams
Ansible Tower technical introduction and overview

INSERT DESIGNATOR, IF NEEDED

Ansible Tower is an enterprise framework for
controlling, securing and managing your Ansible
automation – with a UI and RESTful API.

● RESTful API
● Role Based access control
● Deploy entire applications with

push-button deployment access
● All automations are centrally logged

36 CONFIDENTIAL

RED HAT ANSIBLE TOWER

RED HAT ANSIBLE ENGINE

Scale + operationalize your automation

Support for your Ansible automation

CONTROL KNOWLEDGE DELEGATION

SIMPLE POWERFUL AGENTLESS

FUELED BY AN INNOVATIVE OPEN SOURCE COMMUNITY

INSERT DESIGNATOR, IF NEEDED

Client accessing Ansible Tower

Postgre5QL

MANAGED HOSTS DOMAIN CONTROLLER

CMDB

ANSIBLE TOWER INTEGRATIONS

INSERT DESIGNATOR, IF NEEDED

Core Concepts & Best Practices

INSERT DESIGNATOR, IF NEEDED39

Simplifies playbooks, limits blast radius, and facilitates RBAC

Interconnects, MLAG

Cluster 1 App A Tenant 1 App B
Access

System
AAA NTP Logging Banners DNS ACLs

Overlays

STP

OSPF EIGRP BGP
Core

VLANs

Layered Implementation

INSERT DESIGNATOR, IF NEEDED40

ACL

BGP OSPF NTP

TRUNK

AAA

Manage Applications, not Devices

INSERT DESIGNATOR, IF NEEDED

[access_swicthes]

switch1

switch2

[access:vars]

ansible_network_os=ios

[routers]

juniper1 ansible_network_os=junos

cisco1 ansible_network_os=ios

[network:children]

access_switches

routers

● The devices being automated
● Part of SoT (Source of Truth).
● Static for ad-hoc activities and small

environments.
● Dynamic for wider activities and

large/enterprise/multi-site
environments.

● Groups hosts by function, location,
vendor, etc.

Inventory

INSERT DESIGNATOR, IF NEEDED

Per-Environment
Inventory and Data

Community/Organizational
shared code

Repository-Specific
Playbooks

Project Repository

host_vars/

ansible.cfg

inventory/

test/

hosts

group_vars/

roles/

access_switch/

dist_router/

tenant_firewall/

playbook1.yml

playbook2.yml

prod/

host_vars/
hosts

group_vars/

Directory Structure

INSERT DESIGNATOR, IF NEEDED

Key/Value Pairs

43

Abstraction Through Data Models

Cisco IOS Juniper JunOS

bgp {
 local-as 65082;
 group TST {
 peer-as 65086;
 neighbor 10.11.12.2;
 }
}

router bgp 65082
no synchronization
bgp log-neighbor-changes
neighbor 10.11.12.2 remote-as 65086
no auto-summary

INSERT DESIGNATOR, IF NEEDED

Key/Value Pairs

44

Abstraction Through Data Models

Cisco IOS Juniper JunOS

bgp {
 local-as 65082;
 group TST {
 peer-as 65086;
 neighbor 10.11.12.2;
 }
}

router bgp 65082
no synchronization
bgp log-neighbor-changes
neighbor 10.11.12.2 remote-as 65086
no auto-summary

INSERT DESIGNATOR, IF NEEDED45

bgp:
 global:
 config:
 as: 65082
 neighbors:
 neighbor:
 - neighbor_address: 10.11.12.2
 config:
 peer_group: TST
 peer_as: 65086

Key/Value Pairs
Abstraction Through Data Models

router bgp 65082
no synchronization
bgp log-neighbor-changes
neighbor 10.11.12.2
remote-as 65086
no auto-summary

bgp {
 local-as 65082;
 group TST {
 peer-as 65086;
 neighbor 10.11.12.2;
 }
}

YANG OC Data Model Vendor-Specific Rendering

INSERT DESIGNATOR, IF NEEDED46

● SSH
● Netconf
● API

The Flexibility of Ansible + Data Models
Any Model, Any Encoding, Any Transport

● Vendor
● OpenConfig
● Custom

● CLI
● XML
● JSON

Model Encoding Transport

INSERT DESIGNATOR, IF NEEDED

Implementation Definition Infrastructure

system:
 hostname: "{{ inventory_hostname
}}"
 domain_name: eng.ansible.com

 source_interface:
 name: Management1
 vrf: default

 domain_lookup: no

 name_servers:
 - 1.1.1.1
 - 2.2.2.2

vlan_data:
 - { id: 600, name: management }
 - { id: 601, name: users }

NetworkStorage

ServersApplications

Operations Engineering Production

Desired StateDeploysFeeds

Source of Truth (a.k.a. Key/Value Pairs)

INSERT DESIGNATOR, IF NEEDED48

hostvars[inventory_hostname]:
 interfaces:
 Gi1/0/1:
 description:
"ht3-node1:eth0"
 enabled: True
 mtu: 1500
 mode: trunk
 native_vlan: 99
 Gi1/0/2:
 description:
"ht3-node2:eth0"
 enabled: True
 mtu: 1500
 mode: access
 access_vlan: 10
 Gi1/0/3:
 description:
"ht3-node3:eth0"
 enabled: True
 mtu: 1500
 mode: access
 access_vlan: 10

host_vars\switch1\interfaces.ym
l

CMDB

Manually load w/Playbook:

- include_role:
 name: load_interface_data

Per-Inventory Item
Facts Cache

- name: Set Interface Attributes
 net_interface
 name: “{{ item }}”
 description: “{{ item.description
}}”
 enabled: “{{ item.enabled }}”
 with_items: “{{ interfaces.keys() }}”

Load SoT from Inventory:

Available for Playbooks to
reference:

or

or

Facts: Loading and Using

INSERT DESIGNATOR, IF NEEDED49

hostvars[inventory_hostname]:
 interfaces:
 Gi1/0/1:
 description:
"ht3-node1:eth0"
 enabled: True
 mtu: 1500
 mode: trunk
 native_vlan: 99
 Gi1/0/2:
 description:
"ht3-node2:eth0"
 enabled: True
 mtu: 1500
 mode: access
 access_vlan: 10
 Gi1/0/3:
 description:
"ht3-node3:eth0"
 enabled: True
 mtu: 1500
 mode: access
 access_vlan: 10

- include_role:
 name: save_to_cmdb

Per-Inventory Item
Facts Cache

 - name: write out the interfaces vars
 copy:
 dest: "{{ inventory_dir }}/{{ inventory_hostname
}}/interfaces.yml"
 content: "{{ interfaces | to_nice_yaml }}"

Playbook writes out to inventory:

or write out to CMDB

Facts: Storing

INSERT DESIGNATOR, IF NEEDED50

ios_command
…
ios_vlan
…
ios_interface

 include_role:
 name: access_switch

Set of tasks to achieve
a function

Re-usable, Testable
function available to others

Roles are ways of automatically loading certain vars_files, tasks, and handlers based on a
known file structure. Grouping content by roles also allows easy sharing of roles with other
users.

Roles

INSERT DESIGNATOR, IF NEEDED51

Test

Prod

Switch by
specifying
inventory

[access_swicthes]

[access_swicthes]

- hosts:
access_switches
 roles:
 - access_switch

Testing Roles

INSERT DESIGNATOR, IF NEEDED52

Deploy
Develop

Plan

Test

Operate

SMEs

Developers

Operators

The Automated Enterprise

SoT

INSERT DESIGNATOR, IF NEEDED

Automation for Teams
Ansible Tower technical introduction and overview

INSERT DESIGNATOR, IF NEEDED54

RED HAT ANSIBLE TOWER

RED HAT ANSIBLE ENGINE

Scale + operationalize your automation

Support for your Ansible automation

CONTROL KNOWLEDGE DELEGATION

SIMPLE POWERFUL AGENTLESS

FUELED BY AN INNOVATIVE OPEN SOURCE COMMUNITY

INSERT DESIGNATOR, IF NEEDED

USE
CASES

USERS

ANSIBLE
ENGINE PYTHON CODEBASE

OPEN SOURCE MODULE LIBRARY

PLUGINS

CLOUD
AWS,
GOOGLE CLOUD,
AZURE …

INFRASTRUCTURE
LINUX,
WINDOWS,
UNIX …

NETWORKS
ARISTA,
CISCO,
JUNIPER …

CONTAINERS
DOCKER,
LXC …

SERVICES
DATABASES,
LOGGING,
SOURCE CONTROL
MANAGEMENT…

TRANSPORT

SSH, WINRM, ETC.

AUTOMATE
YOUR

ENTERPRISE

ADMINS

ANSIBLE CLI & CI SYSTEMS

ANSIBLE PLAYBOOKS

….

ANSIBLE
TOWER

SIMPLE USER INTERFACE TOWER API

ROLE-BASED
ACCESS CONTROL

KNOWLEDGE
& VISIBILITY

SCHEDULED &
CENTRALIZED JOBS

CONFIGURATION
MANAGEMENT

APP
DEPLOYMENT

CONTINUOUS
DELIVERY

SECURITY &
COMPLIANCE

ORCHESTRATIONPROVISIONING

INSERT DESIGNATOR, IF NEEDED

Client accessing Ansible Tower

Postgre5QL

MANAGED HOSTS DOMAIN CONTROLLER

CMDB

ANSIBLE TOWER INTEGRATIONS

INSERT DESIGNATOR, IF NEEDED

Heads-up NOC-style automation
dashboard displays everything going
on in your Ansible environment.

Ansible Tower

57

Job Status Update

INSERT DESIGNATOR, IF NEEDED

Securely stores every Job that runs, and
enables you to view them later, or export
details through Tower’s API.

Ansible Tower

58

Activity Stream

INSERT DESIGNATOR, IF NEEDED

Tower’s multi-Playbook workflows chains any
number of Playbooks together to create a single
workflow. Different Jobs can be run depending on
success or failure of the prior Playbook.

59

Ansible Tower
Multi-Playbook Workflows

INSERT DESIGNATOR, IF NEEDED

Connect multiple Tower nodes into a Tower
cluster to add redundancy and capacity to your
automation platform.

Add reserved capacity and capacity by
organization, and deploy remote execution nodes
for additional local capacity.

60

Ansible Tower
Scale-Out Clustering

INSERT DESIGNATOR, IF NEEDED

Tower’s inventory syncing and provisioning
callbacks allow nodes to request configuration
on demand, enabling autoscaling.

Smart Inventories allow you to organize and
automate hosts across all your providers based
on a powerful host fact query engine.

See alerts from Red Hat Insights directly from
Tower, and use Insights-provided Playbook
Remediation to fix issues in your infrastructure.

61

Ansible Tower
Manage and Track Your Inventory

INSERT DESIGNATOR, IF NEEDED

Enables you to schedule any Job now,
later, or forever.

62

Ansible Tower
Schedule Jobs

INSERT DESIGNATOR, IF NEEDED

Stay informed of your automation status
via integrated notifications. Connect
Slack, Hipchat, SMS, email and more.

63

Ansible Tower
Integrated Notifications

INSERT DESIGNATOR, IF NEEDED

Tower lets you launch Playbooks with just a
single click. It can prompt you for variables,
let you choose from available secure credentials
and monitor the resulting deployments.

64

Ansible Tower
Self-Service IT

INSERT DESIGNATOR, IF NEEDED

Connect Tower to your external logging and
analytics provider to perform analysis of
automation and event correlation across your
entire environment.

65

Ansible Tower
External Logging

INSERT DESIGNATOR, IF NEEDED

DISCOVER
Know what network devices and services are
installed, represented visually

DESIGN
Create and build new topologies, adapt existing
topologies from discovery, and utilize existing
playbooks

DEPLOY
Convert designs to actual physical or
virtual deployments using Ansible
playbooks and network modules, and then
automate deployment Group, Copy/Paste, Zoom

NOTE: Currently in Alpha and not committed to a release

66

Ansible Tower
Network Visualization

INSERT DESIGNATOR, IF NEEDED

Use Cases

INSERT DESIGNATOR, IF NEEDED68

VLANs

SVIs

Firewall
Context

Routing/
Peering

1. Automate the deployment of the individual
components as a workflow.

2. Make that workflow available to operators.
3. Force changes to workflow to maintain

compliance
4. Run that workflow on a regular bases to

detect any deviation from the original
deployment.

Automating Complex Tasks

INSERT DESIGNATOR, IF NEEDED

collect:
 ios_router:
 - show ip ospf neighbors....
 - show bgp summary....
 - show ip ospf route....
 - show ip bgp route....
 nxos_switch:
 - show ip arp....
 - show mac address-table....
 bigip:
 -
 junos:
 -
 linux:
 -

Automating Troubleshooting

INSERT DESIGNATOR, IF NEEDED

interfaces:
 vtep:
 name: nve1
 source_interface: loopback0
 host_reachability: yes

 control:
 name: loopback0
 address: "{{ control_plane_address }}"

 fabric:
 Ethernet1/1-4:
 name: Ethernet1/1-4 FABRIC

DC Fabric Deployment

INSERT DESIGNATOR, IF NEEDED71

 fw_rules:
 - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 32400, proto: tcp, action: allow, comment: app1 }
 - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 1900, proto: udp, action: allow, comment: app2 }
 - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 3005, proto: tcp, action: allow, comment: app3 }
 - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 5353, proto: udp, action: allow, comment: app4 }

 - name: Insert ASA ACL
 asa_config:
 lines:
 - "access-list {{ item.rule }} extended {{ item.action }}{{ item.proto }}{{ item.src_ip | ipaddr('network') }}{{ item.src_ip
| ipaddr('network') }}{{ item.dst_ip | ipaddr('network') }}{{ item.dst_ip | ipaddr('network') }} eq {{ item.dst_port }}"
 provider: "{{ cli }}"
 with_items: "{{ fw_rules }}"

 - name: Create security rules
 panos_security_rule:
 operation: "{{ item.action | default (omit) }}"
 rule_name: "{{ item.comment | default (omit) }}"
 service: "{{ item.dst_port | default (omit) }}"
 description: "{{ item.description | default (omit) }}"
 source_zone: "{{ item.rule | default (omit) }}"
 destination_zone: "{{ item.destination_zone | default (omit) }}"
 action: "{{ item.action | default ('allow') }}"
 commit: "{{ item.comment | default (omit) }}"

Policy Abstraction

INSERT DESIGNATOR, IF NEEDED72

1. Automate the creation of the VPC and
network components.

2. Deploy the same routers, load-balancers,
and firewalls that you use on-site.

3. Automate the entire network in a uniform
way.

VPC

Host

Resource Group

Host

Hybrid Cloud

INSERT DESIGNATOR, IF NEEDED73

Network

1. Customer makes request from the service
catalog

2. Request goes through approval process
3. Service catalog calls Tower API to fulfill

request
4. Ansible Tower updates ticket

Workflow Automation

INSERT DESIGNATOR, IF NEEDED74

Network

Collect Data

Send Notification/
Open Ticket

1. Monitoring/Logging Platform detects event
and calls the Ansible Tower API

2. Ansible Tower runs a playbook to collect
event-specific information

3. Ansible Tower runs a playbook to open a
support ticket and/or notify Tier 2 support

Tier 1 Support Automation

INSERT DESIGNATOR, IF NEEDED

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

INSERT DESIGNATOR, IF NEEDED76 CONFIDENTIAL

ANSIBLE’S AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE
PLAYBOOK

ANSIBLE’S AUTOMATION ENGINE

CMDB

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

USERS

ANSIBLE
PLAYBOOK

PLAYBOOKS

• Written in YAML

• Tasks are executed sequentially

• Invokes Ansible modules

MODULES

• Tools in the toolkit

• Python, Powershell or

 any language

• Extend Ansible simplicity

 to entire stack

ANSIBLE’S AUTOMATION ENGINE

CMDB

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

API

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

USERS

ANSIBLE
PLAYBOOK

MODULES

How Ansible Works

CMDB
PUBLIC / PRIVATE

CLOUD

PLUGINS

• Gears in the engine

• Python that plugs into the

 core engine

• Adaptability for various uses

 & platforms

USERS

ANSIBLE
PLAYBOOK

ANSIBLE’S AUTOMATION ENGINE

HOSTS

NETWORK
DEVICES

API

MODULES

PUBLIC / PRIVATE
CLOUD

INVENTORY

PLUGINS

USERS

ANSIBLE
PLAYBOOK

[spine]
spine1.example.com
spine2.example.com

[leaf]
leaf1.example.com
leaf2.example.com

ANSIBLE’S AUTOMATION ENGINE

CMDB

HOSTS

NETWORK
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

INVENTORY

CLOUD

OpenStack, VMware, EC2,

Rackspace, GCE, Azure,

Spacewalk, Hanlon, Cobbler

CUSTOM CMDBUSERS

ANSIBLE
PLAYBOOK

ANSIBLE’S AUTOMATION ENGINE

HOSTS

NETWORK
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

INVENTORY

CMDB
PUBLIC / PRIVATE

CLOUD

7777 CONFIDENTIAL

AUTOMATION FOR TEAMS
Ansible Tower technical introduction and overview

7878 CONFIDENTIAL

WHAT IS ANSIBLE TOWER?

• Role-based access control

• Deploy entire applications with
 push-button deployment access

• All automations are centrally logged

Ansible Tower is an enterprise framework for
controlling, securing and managing your Ansible
automation – with a UI and RESTful API.

AUTOMATION and SDN

BENEFIT SDN AUTOMATION

Reconfigure the network from a central point

Reduced vendor lock in with commodity hardware

Leverage existing infrastructure

Programmability

Reduced opex/capex costs

✔ ✔

✔

✔

✔

✔

✔

✖

?

?

PRIMARY SDN USE CASES

SOFTWARE DEFINED NETWORK (SDN)

Ref: https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf

RED HAT ANSIBLE ENGINE NETWORKING ADD-ON

• Developed, maintained, tested, and supported
 by Red Hat

• 140+ supported modules and growing*

• Red Hat reports and fixes problems

• Networking modules included with Ansible Engine
 offering, but the Ansible Engine Networking Add-On
 SKU purchase is required for full support

*take special note of the specific supported platforms

NETWORK MODULES NETWORKING ADD-ON
INCLUDED SUPPORT:

Arista EOS

Cisco IOS

Cisco IOS XR

Cisco NX-OS

Juniper Junos

Open vSwitch

VyOS

NETWORK VISUALIZATION (USE CASES)

DISCOVER
Know what network devices and
services are installed, represented
visually

DESIGN
Create and build new topologies, adapt
existing topologies from discovery, and
utilize existing playbooks

DEPLOY
Convert designs to actual physical or
virtual deployments using Ansible
playbooks and network modules, and
then automate deployment

Group, Copy/Paste, Zoom

NOTE: Currently in Alpha and not committed to a release

DEVICE SPECIFIC ZOOM LEVEL

Drag and Drop roles into a device
- device which roles are used where

Look at physical connections
- see this device’s perspective of the network

“REGIONAL” SITE VIEW

Raleigh
Datacenter Geographically keep track of sites

- real world mapping at a high level

“GLOBAL” VIEW

Raleigh Data Center

Mumbai Data Center

Brasilia Data Center

INSERT DESIGNATOR, IF NEEDED87

Automating Complex Tasks: Networks

Problem:

• Deploying, configuring, and maintaining a network requires many manual tasks by
skilled artisans. Configuration issues and unknown changes account for a majority of
downtime.

INSERT DESIGNATOR, IF NEEDED88

Firewall/Load Balancer Updates

Problem:

• Rapid Application development requires many updated to firewalls and
load balancers. Manually adding these takes time and is prone to error.

• The task is made more difficult when multiple vendors are deployment.

INSERT DESIGNATOR, IF NEEDED89

Hybrid Cloud

Problem:

• Public/Hybrid cloud increases the number of things to manage

• Cloud things are different than
on-prem things and different between clouds increasing complexity

INSERT DESIGNATOR, IF NEEDED90

Workflow Automation

Problem:

• Most enterprises have a ticketing/ approval system for common IT tasks. Once the task goes
through the approval process, it ends up in a person’s queue for manual action.

INSERT DESIGNATOR, IF NEEDED91

Tier 1 Support Automation

Problem:

• Many enterprises enterprises monitor for errors conditions, but most don’t do anything with
them. If they do, there is no good data to figure out the problem.

