
Introduction to Jboss Fuse

Challenges of Integrating the
Extended Enterprise
l  Integrating all enterprise assets

many business assets are at the edges (outside the data
center)

l  Avoiding centralizing all services
hub-and-spoke architectures are limiting

l  Getting deployed quickly
lengthy development cycles reduce ROI

l  Controlling run-away costs
from initial outlay to on-going maintenance

l  Avoiding creating yet-another legacy system
want new technology, need to stay agile

l  Creating infrastructure that can scale up...and down
elasticity should be easy

How do you integrate everything...

+
HQ + integration stack

...when the enterprise extends
far beyond the data center?

partners

devices

cloud / SaaS apps

distributors

Traditional integration stack is too expensive,
too difficult to manage and maintain...

+
HQ + integration stack

...and many make do with batch delivery
and hub-and-spoke architecture

batch

batch

point to point
point to point

cloud / SaaS apps

distributors

partners

devices

What JBoss Fuse Brings to Red Hat’s Customers:
	 Integration that extends to the edges of enterprise

Easy to deploy – sophisticated tooling, connectors,small

footprint makes it easy to deploy with less hardware and
limited IT staffing

Many deployment options – deploy on-premise or in the cloud
in any configuration, and change on the fly with automated
provisioning

Standards-based – commitment to industry standards ensures
that JBoss infrastructure is easy to modify and maintain

Centralized management – innovative tooling makes it ease to
configure, deploy, manage and maintain integration
infrastructure

Open source – less expensive and pay as you go to reduce over
all costs in all stages of the project

partners

devices

cloud / SaaS apps

distributors

With JBoss Fuse, You Can Integrate
Everything...

+
HQ + integration stack

JBoss Fuse Integration Product line
Additive capabilities to fit different use cases

A-MQ

Fuse

Fuse Service Works

Messaging Fuse ESB
 Messaging Fuse ESB

Service Development
Service Orchestration
Service Governance

Messaging Platform

Integrate applications,
devices by notification
or exchange of data
using multiple protocols
in any runtime

Integration Platform

Mediate, transform,
route and connect
between loosely coupled
components, services
and applications using
enterprise integration
patterns

Business Services
Platform

Develop and
choreograph business
services, manage
lifecycle, define and
enforce service policy
and monitor service
activity

Red Hat JBoss Fuse

RED HAT JBOSS FUSE
Development and

tooling

Develop, test, debug, refine,
deploy

JBoss Developer Studio

Web services framework
Web services standards, SOAP, XML/

HTTP, RESTful HTTP

Integration framework
Transformation, mediation, enterprise

integration patterns

Management and
monitoring

System and web services

metrics, automated discovery,
container status, automatic

updates

JBoss Operations
Network

+
JBoss Fabric

Management Console
(hawtio)

Apache CXF Apache Camel

Reliable Messaging
JMS/STOMP/NMS/MQTT, publishing-subscribe/point-2-point, store and forward

Apache ActiveMQ

Container
Life cycle management, resource management, dynamic deployment,

security and provisioning

Apache Karaf + Fuse Fabric

RED HAT ENTERPRISE LINUX
Windows, UNIX, and other Linux

JBoss Fuse – Open Source ESB

JBoss Fuse – Open Source Heritage

JBoss Fuse Apache CXF

Fuse Fabric

Apache Camel

Apache ServiceMix

* Many more OSS projects not listed from:
jboss.org, codehaus.org, sourcefourge.net,
apache.org

Apache ActiveMQ

Apache Karaf

Reliable Messaging

Reliable Messaging

Reliable Messaging Included In:
●  Red Hat JBoss A-MQ

●  Red Hat JBoss Fuse

●  Red Hat JBoss Fuse Service Works

Apache ActiveMQ

Apache ActiveMQ

What is Apache ActiveMQ?
●  Top level Apache Software Foundation project

●  Wildly popular, high performance, reliable message broker

o  Clustering and Fault Tolerance

o  Supports publish/subscribe, point to point, message groups, out of band messaging and
streaming, distributed transactions, …

●  Myriad of connectivity options

o  Native Java, C/C++, and .NET

o  AMQP 1.0, MQTT 3.1, STOMP (1.0, 1.1, 1.2), and OpenWire

o  STOMP protocol enables Ruby, JS, Perl, Python, PHP, ActionScript, ...

●  Embedded and standalone deployment options

o  Pre-integrated with open source integration and application frameworks

o  Deep integration with Spring Framework, OSGi, and Java EE

Apache ActiveMQ

Configuring Transport Connectors
●  Configured in broker for client connections

●  TCP - most used; socket connections using binary OpenWire protocol

●  NIO - like TCP, except uses Java NIO to reduce number of threads managing all connections

●  SSL - secure TCP connection

●  STOMP - text based protocol; facilitates multiple language integration

●  MQTT - lightweight publish / subscribe protocol

●  VM - enables efficient in-process connections for embedded broker

Examples:

<transportConnector uri=“tcp://0.0.0.0:61616”/>

<transportConnector uri=“nio://0.0.0.0:61616”/>

<transportConnector uri=“stomp://0.0.0.0:61617”/>

<transportConnector uri=“stomp+nio://0.0.0.0:61617”/>

Apache ActiveMQ

Configuring Client Connections
●  Matches configuration for transport connectors in the broker

●  Set as broker url on JMS connection factory

●  Options can be set in the url as key/value params or directly on the connection factory

Format:

tcp://hostname:port?key=value

Examples:

tcp://myhost:61616?trace=false&soTimeout=60000

Lot more details at:

http://activemq.apache.org/configuring-transports.html

Apache ActiveMQ

Configuring Client Connections -
Wrapper Transports
●  Augment / wrap client side connections

●  Failover - automatic reconnection from connection failures

●  Fanout - simultaneously replicate commands and message to multiple brokers

●  Discovery - automatic discovery of brokers

Format:
wrapper:(tcp://hostname:port?key=value)

Examples:

failover:(tcp://master:61616,tcp://slave:61616)

failover:(tcp://virtualIp:61616)

fanout:(static:(tcp://host1:61616,tcp://host2:61616))

discovery:(multicast://default)?initialReconnectDelay=100

Apache ActiveMQ

Configuring Persistence Adapters
●  File system based

o  kahaDB - recommended; improved scalability and quick recovery

o  levelDB - high throughput, quick recovery, better indexing

o  levelDB replicated - (tech preview only)

●  RDBMS based

o  jdbcPersistenceAdapter - quick and easy to setup

o  journaledJDBC - faster than pure JDBC; file journaling with long term JDBC storage

●  Memory based

o  memoryPersistenceAdapter – testing only; same as <broker persistent=“false”>

Apache ActiveMQ

Configuring Network Connectors
●  Used to connect a broker to other brokers in the network

●  Matches configuration for transport connectors in the broker

Format:

tcp://hostname:port?key=value

Examples:

<networkconnector uri=”static:(tcp://myhost:61616)”/>

<networkconnector

uri=”masterslave:(tcp://master:61616?soTimeout=60000,tcp://slave:61616)”/>

Lot more details at:

http://activemq.apache.org/networks-of-brokers.html

Apache ActiveMQ

High Availability
●  Two complementary approaches:

o  Master/Slave - access to persistent messages after broker failure

§  A given message is in one and only one broker (persistence store)

§  If a broker instance fails, all persistent messages are recoverable upon broker restart

§  Master/Slave allows a 2nd broker instance (slave) to be ready to process persistent
messages upon master (1st broker) failure

§  Clients should use failover transport to automatically connect to slave

●  failover:(tcp://master:61616,tcp://slave:61616)?randomize=false

o  Network of Brokers - scale out message processes

§  Messages can be load balanced to consumers across multiple brokers

§  A message can be forwarded to another broker when a valid consumer is present

§  Brokers can be configured to prioritize local & nearby brokers to reduce network
traffic

Apache ActiveMQ

Master/Slave

Apache ActiveMQ

Network of Brokers

Apache ActiveMQ

Network of Master/Slave

Integration

Integration

Integration Included In:
●  Red Hat JBoss Fuse

●  Red Hat JBoss Fuse Service Works

Apache Camel

Apache Camel

What is Apache Camel?
●  Implementation framework for Enterprise Integration Patterns (EIP)

●  Speeds time to solution and provides multiple connectivity options

●  Popular and vibrant community

●  Started as a sub-project of Apache ActiveMQ in March 2007

●  80-100k artifact downloads a month

●  120k website views a month

●  1,000+ user mailing list posts per month

●  145+ Components and growing

Apache Camel

50+ Enterprise Integration Patterns

http://camel.apache.org/eip

Apache Camel

Camel Example - Java DSL

import org.apache.camel.builder.RouteBuilder;

public class FilterRoute extends RouteBuilder {

 public void configure() throws Exception {
 Endpoint A = endpoint(“activemq:queue:quote”);
 Endpoint B = endpoint(“mq:quote”);
 Predicate isWidget = xpath(“/quote/product = ‘widget’”);

 from(A).filter(isWidget).to(B);
 }
}

Apache Camel

Camel Example - Spring DSL

<camelContext>
 <route>
 <from uri=”activemq:New.Orders”/>
 <choice>
 <when>
 <xpath>/order/product = ‘widget’</xpath>
 <to uri=”activemq:Orders.Widgets”/>
 </when>
 <otherwise>
 <to uri=”activemq:Orders.Gadgets”/>
 </otherwise>
 </choice>
 </route>
</camelContext>

Apache Camel

150+ Endpoint Components

activemq cxf flatpack jasypt

activemq-journal cxfrs freemarker javaspace

amqp dataset ftp/ftps/sftp jbi

atom db4o gae jcr

bean direct hdfs jdbc

bean validation ejb hibernate jetty

browse esper hl7 jms

cache event http jmx

cometd exec ibatis jpa

crypto file irc jt/400

Apache Camel

150+ Endpoint Components

language properties seda stream

ldap quartz servlet string-template

mail/imap/pop3 quickfix sip test

mina ref smooks timer

mock restlet smpp validation

msv rmi snmp velocity

nagios rnc spring-integration vm

netty rng spring-security xmpp

nmr rss spring-ws xquery

printer scalate sql xslt

Apache Camel

Endpoint Configuration Example
Programmatic Example:
...
FileEndpoint fileEp = new FileEndpoint();
fileEp.setFile(new File(“/some/dir”));
fileEp.setDelete(true);
fileEp.setReadLock(“changed”);

from(fileEp).to(...);
...

URI Example:
...
from(“file:///some/dir?delete=true&readLock=changed”).to(...);
...

Apache Camel

Camel Exchange
Exchange

Exchange Properties

Key Value

... ...

In Message

Message Headers

Key Value

... ...

Message Body

Message Attachments x n

Out Message

Message Headers

Key Value

... ...

Message Body

Message Attachments x n

Apache Camel

19 Data Formats

bindy protobuf

castor serialization

csv soap

crypto syslog

dozer tidy markup

flatpack xml beans

gzip xml security

hl7 xstream

jaxb zip

json

Apache Camel

Data Format Example

Input XML File:

<root>
 <child1>text1</child1>
 <child2>text2</child2>
</root>

Camel Route:

...

from(“file:///xmlsourcedir”)
 .unmarshal().jaxb()
 .process(...)
 .marshal().json()
 .to(“file:///jsondestdir”);
...

Output JSON File:

{"root": {"child1": "text1",
 "child2": "text2"}}

Web Services

Web Services

Web Services Included In:
●  Red Hat JBoss Fuse

●  Red Hat JBoss Fuse Service Works

Apache CXF

Apache CXF

What is Apache CXF?
●  Apache CXF is an open source services framework. CXF helps you build and develop services

using frontend programming APIs, like JAX-WS and JAX-RS.

●  These services can speak a variety of protocols such as SOAP, XML/HTTP, RESTful HTTP, or
CORBA and work over a variety of transports such as HTTP, JMS or JBI

Apache CXF

Standards Support
JSR Support

●  JAX-WS - Java API for XML-Based Web Services (JAX-WS) 2.0 - JSR-224

●  Web Services Metadata for the Java Platform - JSR-181

●  JAX-RS - The Java API for RESTful Web Services - JSR-311

●  SAAJ - SOAP with Attachments API for Java (SAAJ) - JSR-67

WS-* & Related Specifications Support

●  Basic support: WS-I Basic Profile 1.1

●  Quality of Service: WS-Reliable Messaging

●  Metadata: WS-Policy, WSDL 1.1 - Web Service Definition Language

●  Communication Security: WS-Security, WS-SecurityPolicy, WS-SecureConversation, WS-Trust
(partial support)

●  Messaging Support: WS-Addressing, SOAP 1.1, SOAP 1.2, Message Transmission
Optimization Mechanism (MTOM)

Apache CXF

Transports and Bindings
●  Transports: HTTP, Servlet, JMS, In-VM and many others via the Camel transport for CXF such

as SMTP/POP3, TCP and Jabber

●  Protocol Bindings: SOAP, REST/HTTP, pure XML

●  Data bindings: JAXB 2.x, Aegis, Apache XMLBeans, Service Data Objects (SDO), JiBX

●  Formats: XML Textual, JSON, FastInfoset

●  Extensibility API allows additional bindings for CXF, enabling additional message format support
such as CORBA/IIOP

Red Hat JBoss Fuse
Demo

Fuse Fabric

What is Fuse Fabric?
Management for Fuse environments that enable clustering, simplified deployments, configuration

management, grouping, dynamic discovery, elasticity of deployments, and cloud-ready
deployments

Fuse Fabric

Problems - Deploying & Maintenance
●  Installing brokers on multiple hosts

●  ssh, untar, set directories and environment

●  Setting configuration manually for every broker

●  copying xml config, tweaking, testing

●  Updating configuration across cluster

●  Upgrading brokers

It’s a very tedious and error-prone process

Fuse Fabric

Problems - Clients
●  Topology is very “static”

●  Clients need to be aware of topology

●  Clients need to know broker & service locations

●  Changes are not easy as clients need to be updated

●  Adding new resources (brokers & services) requires client updates

●  Not suitable for “cloud” deployments

Fuse Fabric makes deployments more “elastic”

Fuse Fabric

Key Features
●  Support Hybrid deployments - on premise,

cloud, both

o  Endpoints can be relocated

o  Endpoints can be load balanced

o  Endpoints can be elastic

o  Endpoints can be highly available

●  Distributed Configuration

o  Configuration may be accessed
across multiple domains

o  Configuration is highly available

●  Distributed Management

o  Easy elastic scaling of services

o  Monitoring and control of resources

