
F7212-091117

ANSIBLE for CLOUD AUTOMATION

Marcos Garcia
Senior Cloud Solutions Architect

1

Cloud Provider’s

Native CLI
Ansible Cloud Modules

Cloud Provider’s

Orchestration Templates

FOUR WAYS TO AUTOMATE YOUR CLOUD
With Ansible

Terraform Module

Case Study: NASA - automating AWS with Ansible
NASA needed to move roughly 65 applications from a traditional hardware based data center to a cloud-based environment for
better agility and cost savings. The rapid timeline resulted in many applications being migrated ‘as-is’ to a cloud environment.

This created an environment spanning multiple virtual private clouds (VPCs) and AWS accounts that could not be easily
managed. Even simple things, like ensuring every system administrator had access to every server, or simple patching, were
extremely burdensome

As a result of implementing Ansible Tower, NASA is better equipped to manage its AWS environment. Tower allowed NASA to
provide better operations and security to its clients. It has also increased efficiency as a team.

By the numbers:

• Updating nasa.gov went from over 1 hour to under 5 minutes

• Patching updates went from a multi-day process to 45 minutes

• Achieving near real-time RAM and disk monitoring (accomplished without agents)

• Provisioning OS Accounts across entire environment in under 10 minutes

• Baselining standard AMIs went from 1 hour of manual configuration to becoming an invisible and seamless background process

• Application stack set up from 1-2 hours to under 10 minutes per stack

Ansible Automation

AUTOMATION BACKPLANE (ENGINE)

ANSIBLE TOWER

Core + Cloud Core + Network Core + Config Core + DevOps ...

Network
AutomationCloud Automation Config Automation … Automation

NetOps
Playbooks & Roles

CloudOps
Playbooks & Roles

Server Config
Playbooks & Roles

Security
Playbooks & Roles

Solution areas

Content layer

Module packs
included

Ansible 101

WHY ENTERPRISE-WIDE IT AUTOMATION IS ELUSIVE TODAY

PEOPLE PROBLEMS POINT TOOLS PACE OF INNOVATION

1 2 3

Skills gaps & org charts
get in the way

Proliferation of point solutions
and vendor-specific tools

Automation requires integration
across domains

An enterprise-wide
automation strategy
must benefit individuals first.

INDIVIDUAL

TEAM

ENTERPRISE

DEV QA/SECURITY IT OPERATIONSBUSINESS

ANSIBLE IS THE UNIVERSAL LANGUAGE

9 CONFIDENTIAL

WHAT IS ANSIBLE AUTOMATION?

- name: install and start apache
 hosts: all
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root

 tasks:
 - name: install httpd
 yum: pkg=httpd state=latest

 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf

 - name: start httpd
 service: name=httpd state=started

[user@hostname: $] ansible-playbook -i inventory playbook.yml

PLAY [install and start apache] ***********************************

TASK [Gathering Facts] **

ok: [webserver.local]

TASK [install httpd] **

changed: [webserver.local]

TASK [write the apache config file] ********************************

changed: [webserver.local]

TASK [start httpd] ***

changed: [webserver.local]

PLAY RECAP ***

webserver.local : ok=4 changed=3 unreachable=0 failed=0

The Ansible project is an open source community
sponsored by Red Hat. It’s also a simple
automation language that perfectly describes IT
application environments in Ansible Playbooks.

Ansible Engine is a supported product built from
the Ansible community project.

Ansible Tower is an enterprise framework for
controlling, securing, managing and extending your
Ansible automation (community or engine) with a
UI and RESTful API.

10 CONFIDENTIAL

1900+
Ansible modules

30,000+
Stars on GitHub

500,000+
Downloads a month

11 CONFIDENTIAL

CROSS PLATFORM

Agentless support for all major OS
variants, physical, virtual, cloud and
network devices.

HUMAN READABLE

Perfectly describe and document
every aspect of your application
environment.

PERFECT DESCRIPTION
OF APPLICATION

Every change can be made by
Playbooks, ensuring everyone is on
the same page.

VERSION CONTROLLED

Playbooks are plain-text. Treat them
like code in your existing version
control.

DYNAMIC INVENTORIES

Capture all the servers 100% of the
time, regardless of infrastructure,
location, etc.

ORCHESTRATION PLAYS
WELL WITH OTHERS

Every change can be made by
Playbooks, ensuring everyone is on
the same page.

THE ANSIBLE WAY

12 CONFIDENTIAL

WHAT CAN I DO WITH ANSIBLE?

Automate the deployment and management of your entire IT footprint.

Orchestration

Do this...

Firewalls

Configuration
Management

Application
Deployment Provisioning Continuous

Delivery
Security and
Compliance

On these...

Load Balancers Applications Containers Clouds

Servers Infrastructure Storage And more...Network Devices

13 CONFIDENTIAL

CLOUD

AWS

Azure

CenturyLink

CloudScale

Digital Ocean

Docker

Google

Linode

OpenStack

Rackspace

And more...

WINDOWS

ACLs

Files

Commands

Packages

IIS

Regedits

Shell

Shares

Services

DSC

Users

Domains

And more...

VIRT AND
CONTAINER

Docker

VMware

RHEV

OpenStack

OpenShift

Atomic

CloudStack

And more...

NETWORK

Arista

A10

Cumulus

Big Switch

Cisco

Cumulus

Dell

F5

Juniper

Palo Alto

OpenSwitch

And more...

NOTIFY

HipChat

IRC

Jabber

Email

RocketChat

Sendgrid

Slack

Twilio

And more...

ANSIBLE SHIPS WITH OVER 1900 MODULES

F10088-171207

14

INFRASTRUCTURE AS YAML
● Automate backup & restores
● Manage “golden” versions of configurations

CONFIGURATION MANAGEMENT
● Changes can be incremental or wholesale
● Make it part of the process: agile, waterfall, etc.

ENSURE AN ONGOING STEADY STATE
● Schedule tasks daily, weekly, or monthly
● Perform regular state checking and validation

Three high-level benefits for successful network operations

CONFIDENTIAL - FOR INTERNAL USE ONLY

START SMALL, THINK BIG

ANSIBLE NETWORK

OPERATIONS CENTRIC
NETWORK AUTOMATION

CLOUD CENTRIC
NETWORK AUTOMATION

APPLICATION CENTRIC
NETWORK AUTOMATION

- Build and push device
configurations

- Automate tactical
operations on network
devices

- Automate network devices
in support of applications

- Support direct to device and
controller based
virtualization

- Describe and deploy
network connectivity
between clouds

- Support public/private
and/or public/public clouds

Cloud CLI

F10088-171207

Cloud Provider’s CLI

AWS

$ yum install awscli

$ aws configure

(New!)

$ pip install aws-shell

Azure

$ yum install azure

$ az login

GCP

$ yum install google-cloud-sdk

$ gcloud init

F10088-171207

An Example
- hosts: localhost
 connection: local

 tasks:

 - name: Describe VPCs

register: vpcs

local_action:

 module: command aws ec2 describe-vpcs

 - name: Print VPCs

debug:

 msg: "{{item}}"

with_items: "{{vpcs.stdout | from_json}}.Vpcs"

F10088-171207

$ ansible-playbook clidemo.yml

Demo: Ansible CLI for EC2

Ansible Cloud Modules

F10088-171207

https://www.ansible.com/integrations/cloud

F10088-171207

CLOUD PROVIDER
API

22 CONFIDENTIAL - FOR INTERNAL USE ONLY

HOW DOES CLOUD AUTOMATION WORK?

Python code is executed
locally on the control node
(localhost)

LINUX
HOSTS

Python code is copied to
the managed node,
executed, then removed

CONTROL NODE

CONTROL NODE

F10088-171207

Cloud Provider’s Python Modules

AWS

https://docs.ansible.com/ansible/2.6/scenario_gu
ides/guide_aws.html

$ pip install boto3 boto

> ~/.aws/credentials

OR

> Environment Variables

OR

> Module parameters as
Variables in Vault

Azure

https://docs.ansible.com/ansible/2.6/scenario_guides
/guide_azure.html

$ pip install ansible[azure]

> ~/.azure/credentials

OR

> Environment Variables

OR

> Module parameters as
Variables in Vault

GCP

https://docs.ansible.com/ansible/2.6/scenario_guides/g
uide_gce.html

$ pip install request google-auth

 > service_account_file: file.json

OR

> Environment Variables

OR

> Module parameters as
Variables in Vault

https://docs.ansible.com/ansible/2.6/scenario_guides/guide_aws.html
https://docs.ansible.com/ansible/2.6/scenario_guides/guide_aws.html
https://docs.ansible.com/ansible/2.6/scenario_guides/guide_azure.html
https://docs.ansible.com/ansible/2.6/scenario_guides/guide_azure.html
https://docs.ansible.com/ansible/2.6/scenario_guides/guide_gce.html
https://docs.ansible.com/ansible/2.6/scenario_guides/guide_gce.html

F10088-171207

An Example
 - name: Ensure the keypair exists
 ec2_key:
 name: "{{keypair_name}}"
 key_material: "{{ lookup('file', keypair_path) }}"
 region: "{{region}}"

 - name: Launch the CentOS AMI
 ec2:
 key_name: "{{keypair_name}}"
 image: "{{ami_id}}"
 region: "{{region}}"
 instance_type: "{{size}}"
 assign_public_ip: yes
 vpc_subnet_id: "{{vpc_subnet_id}}"
 register: myec2

 - name: Refresh EC2 facts for that instance
 ec2_instance_facts:
 instance_ids: "{{myec2.instances[0]['id']}}"

F10088-171207

$ ansible-playbook clouddemo.yml

Demo: Ansible basic EC2

F10088-171207

https://github.com/hornjason/ansible-ocp-azure

https://blog.openshift.com/openshift-container-platform-reference-architecture-implementation
-guides/

Showcase: Ansible advanced Azure

https://github.com/hornjason/ansible-ocp-azure
https://blog.openshift.com/openshift-container-platform-reference-architecture-implementation-guides/
https://blog.openshift.com/openshift-container-platform-reference-architecture-implementation-guides/

Ansible and Terraform

F10088-171207

Option 1: Ansible calls Terraform

- terraform:
 project_path: '{{ project_dir }}'
 state: present

Also, Ansible can use Terraform State as a Dynamic Inventory

To re-use well-known TF templates from other teams, running in prod with current state

https://docs.ansible.com/ansible/latest/modules/terraform_module.html#terraform-module

https://docs.ansible.com/ansible/latest/modules/terraform_module.html#terraform-module

F10088-171207

Option 2: Terraform calls Ansible

resource "aws_instance" "jenkins_master" {
 ami = "ami-f95ef58a"
 instance_type = "t2.small"
 subnet_id = "${aws_subnet.jenkins.id}"
 security_group_ids = ["${aws_security_group.jenkins_master.id}"]
 associate_public_ip_address = true
 key_name = "deployer-key"

 # This is where we configure the instance with ansible-playbook
 provisioner "local-exec" {
 command = "sleep 120; ANSIBLE_HOST_KEY_CHECKING=False \
ansible-playbook -u clouduser --private-key ./deployer.pem -i
'${aws_instance.jenkins_master.public_ip},' master.yml"
 }
}

To provision Instances using Ansible Roles, standardized by IT and used on-premises

https://nicholasbering.ca/tools/2018/01/08/introducing-terraform-provider-ansible/

https://nicholasbering.ca/tools/2018/01/08/introducing-terraform-provider-ansible/

F10088-171207

$ ansible-playbook tfdemo.yml

Demo: Ansible calls Terraform

Cloud-Specific Orchestration

AWS CloudFormation Azure Resource Manager Template

resources:
- type: Microsoft.Network/virtualNetworks/subnets
 name: "site2.scarter/outside"
 apiVersion: '2017-06-01'
 properties:
 addressPrefix: "10.2.1.0/24"

Resources:
 outsidesite2scarter:
 Type: AWS::EC2::Subnet
 Properties:
 CidrBlock: 10.2.1.0/24
 AvailabilityZone: us-east-1a
 VpcId:
 Ref: site2scarter

 Tags:
 - Key: Name
 Value: outside.site2.scarter

SILOED AUTOMATION

resources:
- type: Microsoft.Network/virtualNetworks/subnets
 name: "site2.scarter/outside"
 apiVersion: '2017-06-01'
 properties:
 addressPrefix: "10.2.1.0/24"

Resources:
 outsidesite2scarter:
 Type: AWS::EC2::Subnet
 Properties:
 CidrBlock: 10.2.1.0/24
 AvailabilityZone: us-east-1a
 VpcId:
 Ref: site2scarter

 Tags:
 - Key: Name
 Value: outside.site2.scarter

SO MANY WORDS… but only a
few things matter

AWS CloudFormation Azure Resource Manager Template

SILOED AUTOMATION

Multiple VPN Options:

● AWS Virtual Private Gateway
● Azure VPN Gateway
● GCE Cloud VPN

Multiple peering options:

● AWS Direct Connect
● Azure ExpressRoute
● GCE Dedicated Interconnect

They cannot even agree on the icons! Corporate DC

Public Internet

TODAY...
2010 Era silos

AWS CloudFormation

Azure Resource Manager Template

resources:
- type: Microsoft.Network/virtualNetworks/subnets
 name: "site2.scarter/outside"
 apiVersion: '2017-06-01'
 properties:
 addressPrefix: "10.2.1.0/24"

Resources:
 outsidesite2scarter:
 Type: AWS::EC2::Subnet
 Properties:
 CidrBlock: 10.2.1.0/24
 AvailabilityZone: us-east-1a
 VpcId:
 Ref: site2scarter

 Tags:
 - Key: Name
 Value: outside.site2.scarter

vpc_list:
- name: site2.scarter
 cidr: 10.2.0.0/16
 networks:
 - name: mgmt.site2.scarter
 cidr: 10.2.0.0/24
 - name: outside.site2.scarter
 cidr: 10.2.1.0/24
 - name: inside.site2.scarter
 cidr: 10.2.2.0/24

DATA MODELS
Better Living Through Abstraction

cloud_acls:
 rtr-acl:
 - { src_ip: 0.0.0.0/0, proto: all }
vpc_list:
 - name: "{{ cloud_name }}"
 provider: "{{ cloud_provider }}"
 region: "{{ cloud_region }}"
 project: "{{ cloud_name }}"
 cidr: "{{ cloud_cidr }}"
 networks:
 - name: "outside.{{ cloud_name }}"
 cidr: "{{ cloud_cidr | ipsubnet(24, 1) }}"
 az: "{{ cloud_region }}a"
 - name: "inside.{{ cloud_name }}"
 cidr: "{{ cloud_cidr | ipsubnet(24, 2) }}"
 az: "{{ cloud_region }}a"
 routes:
 - cidr: "0.0.0.0/0"
 instance: "rtr1.{{ cloud_name }}"
 if_index: 2
 instances:
 - name: "rtr1.{{ cloud_name }}"
 size: medium
 image: csr-byol
 interfaces:
 - name: GigabitEthernet1

Corporate DC

THIS

THIS

THAT

MODEL-DRIVEN INFRASTRUCTURE

ONBOARDING CLOUD NATIVE

Provision Cloud
Instance

Provision Cloud
Network Services

Connect Cloud
Router to DC

Connect VPN
Tunnels

Provision Cloud
Instance

Provision Cloud
Network Services

Connect Cloud
Router to DC

Connect VPN
Tunnels

Connect VPN
Tunnels

Connect VPN
Tunnels

Connect DC Router
to Cloud Router

Connect DC Router
to Cloud Router

Cloud Model

Playbook ON-PREM

Provision Local
Network Services

Provision Local
Network Services

INSERT DESIGNATOR, IF NEEDED38

1. Automate the creation of the VPC and
network components.

2. Deploy the same routers, load-balancers,
and firewalls that you use on-site.

3. Automate the entire network in a uniform
way.

VPC

Host

Resource Group

Host

Hybrid Cloud

INSERT DESIGNATOR, IF NEEDED

Demo Builder (Cloud Networking)

$ cd ansible-cloudbuilder-playbook

$ ansible-playbook build-aws-csr-spoke.yml

$ ansible -m ping -i inventory/cloudbuilder/csr-lab1.yml all

Bonus: Packer and Docker

When to use Packer vs bare Docker (no k8s)
Packer pros:

● Cloud-aware builds and cloud agnostic
● Works with legacy Virtualization too
● Runs older Linux versions
● Runs any software
● Good ol’ Golden Image (ITSM process)
● Builds to Docker too

Packer cons:
● It’s just a tool for IaaS
● Need to store binaries for each target
● Yet another tool!

Docker pros:
● Vast collection in docker registry
● Immutable infra
● Path to kubernetes and microservices
● Better portability
● Immediate rollbacks, dependency isolation

Docker cons:
● Needs a running daemon, non-root UID
● Layers, layers, layers!
● Need to modernize (CGroups, SELinux)
● Lacks systemd integration
● No standard process manager

F7212-091117

THANK YOU

red.ht/red-hat-shares

42

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

http://red.ht/red-hat-shares

control
10.0.2.10

DC

host1
10.2.2.10

10.2.2.0/24

Site2

10.0.2.0/24

10.0.0.0/16

10.2.0.0/16

Scenario: Provision new cloud capacity using
template and add to corporate SD-WAN

1. Provision the new Cloud node
2. Configure remote router

a. Set Hostname, DNS, Banners, etc.
b. Harden router
c. Configure Interfaces
d. Backup

3. Add remote router to VPN
a. Checkpoint State
b. Create IPSEC VPN
c. Configure BGP
d. Check connectivity
e. Rollback on failure

MULTI-SITE/CLOUD DEMO

Public Internet

host1
10.1.2.10

10.1.2.0/24

Site1

10.1.0.0/16

