
A in-depth technical look at
OpenShift Enterprise 3.1

OpenShift Enables Both Dev and Ops

Community Powered Innovation

Openshift 3.1 - Open Source Components

Metrics
Logging with EFK

Installation

Architecture

10,000ft View

OpenShift runs on your choice of infrastructure

Nodes are instances of RHEL where apps will run

App services run in docker containers on each node

Registry

Pods run one or more docker containers as a unit

Masters leverage kubernetes to orchestrate nodes / apps

Master provides authenticated API for users & clients

Master uses etcd key-value data store for persistence

Master provides scheduler for pod placement on nodes

Pod placement is determined based on defined policy

Services allow related pods to connect to each other

Management/Replication controller manages the pod lifecycle

What if a pod goes down?

OpenShift automatically recovers and deploys a new Pod

Pods can attach to shared storage for stateful services

Routing layer routes external app requests to pods

Developers access openShift via web, CLI or IDE

New!

Storage Plugins

Attach persistent storage to your
containers from a wide range of

storage solutions.

AWS

Google Cloud Storage

Ceph

Gluster

iSCSI

NFS

FibreChannel

Storage Capabilities for stateful applications

Installation and first contact

**** NAME RESOLUTION
Use IDM
A A record is needed (*.app.ose.dom)

REPOSITORIES REQUIRED
rhel-7-server-rpms
rhel-7-server-extras-rpms
rhel-7-server-ose-3.1-rpms

yum install -y git net-tools bind-utils iptables-services bridge-utils
yum -y install atomic-openshift-utils
yum -y install docker

Other steps : Configure Docker + Docker storage, install Openshift, configure the authentication, configure a registry then
configure the router
(https://access.redhat.com/documentation/en/openshift-enterprise/3.1/installation-and-configuration/chapter-2-installing)

oc login
To access the web console : https://openshift.dom:8443

Installation Openshift Enterprise 3.1

https://access.redhat.com/documentation/en/openshift-enterprise/3.1/installation-and-configuration/chapter-2-installing
https://openshift.dom/

First contact with OpenShift 3

CREATE A NEW USER
[root@os3 ~]# htpasswd -c /etc/origin/users.htpasswd georges

LOGIN AS A USER
[root@os3 ~]# oc login
Authentication required for https://os3.mlc.dom:8443 (openshift)
Username: georges
Password:
Login successful.

You don't have any projects. You can try to create a new project, by running

 $ oc new-project <projectname>

LOGIN AS AN ADMIN
[root@os3 ~]# oc login -u system:admin -n default
 You have access to the following projects and can switch between them with 'oc project <projectname>':

 * default (current)
 * openshift
 * openshift-infra
 * template2

Using project "default".

First contact with Openshift 3

LOGIN AS A USER AND CREATE A NEW PROJECT
[root@os3 ~]# oc new-project georges
Now using project "georges" on server "https://os3.mlc.dom:8443".

CREATE AN APPLICATION (using a container from Docker Hub)
[root@os3 ~]# oc new-app kubernetes/guestbook
--> Found Docker image a49fe18 (15 months old) from Docker Hub for "kubernetes/guestbook"
 * An image stream will be created as "guestbook:latest" that will track this image
 * This image will be deployed in deployment config "guestbook"
 * Port 3000/tcp will be load balanced by service "guestbook"
--> Creating resources with label app=guestbook ...
 ImageStream "guestbook" created
 DeploymentConfig "guestbook" created
 Service "guestbook" created
--> Success
 Run 'oc status' to view your app.

[root@os3 ~]# oc get pods
NAME READY STATUS RESTARTS AGE
guestbook-1-deploy 1/1 Running 0 4s
guestbook-1-t2xos 1/1 Running 0 2s

[root@os3 ~]# oc get service
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE
guestbook 172.30.166.174 <none> 3000/TCP app=guestbook,deploymentconfig=guestbook 22m

https://os3.mlc.dom:8443/

First contact with Openshift 3

EXPOSE A SERVICE
[root@os3 ~]# oc expose service guestbook
route "guestbook" exposed

[root@os3 ~]# oc get route
NAME HOST/PORT PATH SERVICE LABELS INSECURE POLICY TLS TERMINATION
guestbook guestbook-georges.app.os3.mlc.dom guestbook app=guestbook

Replication Controllers (RC)
Used to specify and then ensure the desired number of Pods (replicas)
are in existence

DeploymentConfiguration(DC)
Defines how something in Openshift should be deployed

[root@os3] # oc get rc
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR
REPLICAS AGE
guestbook-1 guestbook kubernetes/guestbook@sha256:a49fe18bb57c8eee16e2002987e041f5ae9b5b70ae7b3d49eb60e5c26b9c6bd0
app=guestbook,deployment=guestbook-1,deploymentconfig=guestbook 1 10m

[root@os3 key]# oc get dc
NAME TRIGGERS LATEST
guestbook ConfigChange, ImageChange 1

mailto:root@os3

SCALING UP
[root@os3]# oc scale --replicas=3 rc guestbook-1
replicationcontroller "guestbook-1" scaled

Source to image

Developers can leverage existing development
tools and then access the OpenShift Web, CLI
or IDE interfaces to create new application
services and push source code via GIT.
OpenShift can also accept binary deployments
or be fully integrated with a customer’s existing
CI/CD environment.

Code

Source 2 Image Walk Through Can configure triggers for
automated deployments,
builds, and more.

OpenShift automates the Docker image build
process with Source-to-Image (S2I). S2I
combines source code with a corresponding
Builder image from the integrated Docker
registry. Builds can also be triggered manually or
automatically by setting a Git webhook.

Build

Source 2 Image Walk Through Can configure triggers for
automated deployments,
builds, and more.

Deploy
OpenShift automates the deployment of
application containers across multiple Node
hosts via the Kubernetes scheduler. Users can
automatically trigger deployments on application
changes and do rollbacks, configure A/B
deployments & other custom deployment types.

Source 2 Image Walk Through

Can configure different
deployment strategies
like A/B, Rolling upgrade,
Automated base updates,
and more.

Can configure triggers for
automated deployments,
builds, and more.

Code

Deploy

Build

Can configure different
deployment strategies
like A/B, Rolling upgrade,
Automated base updates,
and more.

Can configure triggers for
automated deployments,
builds, and more.

Source 2 Image Walk Through

SOURCE TO IMAGE EXAMPLE

[root@os3 ~]# oc new-project mlbparks
SOURCE TO IMAGE
[root@os3 ~]# oc new-app registry.access.redhat.com/jboss-eap-6/eap-openshift~https://github.com/michaellessard/openshift3mlbparks.git
[root@os3 ~]# oc get builds
NAME TYPE FROM STATUS STARTED DURATION
openshift3mlbparks-1 Source Git Running 12 seconds ago 12s

oc build-logs openshft3mlbparks-1
…....
Downloading: https://repo1.maven.org/maven2/org/apache/commons/commons-compress/1.5/commons-compress-1.5.jar
Downloaded: https://repo1.maven.org/maven2/org/codehaus/plexus/plexus-archiver/2.4.1/plexus-archiver-2.4.1.jar (161 KB at
1417.2 KB/sec)
Downloading: https://repo1.maven.org/maven2/org/tukaani/xz/1.2/xz-1.2.jar
Downloaded: https://repo1.maven.org/maven2/org/apache/maven/maven-archiver/2.5/maven-archiver-2.5.jar (22 KB at 150.0
KB/sec)
…..

[root@os3 ~]# oc get pods
NAME READY STATUS RESTARTS AGE
openshift3mlbparks-1-build 0/1 Completed 0 2m
openshift3mlbparks-1-ntig9 1/1 Running 0 27s

[root@os3 ~]# oc expose service openshift3mlbparks

ENVIRONMENT VARIABLES + DC

[root@os3 ~]# oc new-app mongodb -e MONGODB_USER=mlbparks -e MONGODB_PASSWORD=mlbparks -e
MONGODB_DATABASE=mlbparks -e MONGODB_ADMIN_PASSWORD=mlbparks

[root@os3 ~]# oc get dc
NAME TRIGGERS LATEST
mongodb ConfigChange, ImageChange 1
Openshift3mlbparks ConfigChange, ImageChange 1

oc env dc openshift3mlbparks -e MONGODB_USER=mlbparks -e MONGODB_PASSWORD=mlbparks -e
MONGODB_DATABASE=mlbparks
deploymentconfig "openshift3mlbparks" updated

[root@os3 ~]# oc get dc
NAME TRIGGERS LATEST
mongodb ConfigChange, ImageChange 1
openshift3mlbparks ConfigChange, ImageChange 2

DOCKER IMAGES IS NOW AVAILABLE
[root@os3 ~]# docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
172.30.177.161:5000/mlbparks/openshift3mlbparks latest 80e9485fd5bb 30 minutes ago 958.9 MB
172.30.177.161:5000/mlbparks/openshift3mlbparks <none> 80e9485fd5bb 30 minutes ago 958.9
MB

OpenShift Product Roadmap Plan
3.0 - June 2015
●Docker container runtime & image packaging
format
●Kubernetes orchestration & mgt.
●Source-to-Image & Docker builds
●JBoss EAP 6.4, JWS 3.0, A-MQ 6.2
●SCL images (Node, Python, PHP, Ruby...)
●Shared storage volumes for stateful apps
●Projects & team collaboration
●OAuth & enterprise auth integration (LDAP)
●Enhanced Web, CLI and IDE interfaces
●Manual scaling

3.0.x - Q3CY2015
●F5 & External Routing Examples
●Reference architectures
●Bug fixes

●Additional storage plugins
●Networking enhancements
●ELK Log Aggregation
●CPU/Memory Overcommit
●HA Ref Arch/Enhancements
●Job Controller
●LDAP teams integration
●Jenkins Image / CI integration

3.2 - 1HCY16 (TBD)
● Mobile Service/Red Hat Mobile
● Autoscaling Enhancements
● CI/CD Pipelines
● Build Automation / Binary

Deployment & ALM Integration
● Service Catalog
● Dev UX enhancements

3.1 - Q4CY15
●CPU autoscaling *
●Integration Service / Fuse 6.x
●Decision Service / BRMS
●Cache Service / JDG
●Eclipse IDE completion
●Web/CLI UX enhancements
●SCL 2 image updates
●CloudForms 4.0 OSE Provider
●CPU/Memory Metrics Aggregation

● Idling
● Non-SNI routing
● OpenStack Neutron
● CloudForms Active

Management
● Enterprise Registry
● Storage Enhancement
● Routing Enhancements

Merci !

	Slide 1
	OpenShift Enables Both Dev and Ops
	Community Powered Innovation
	Slide 4
	Slide 5
	10,000ft View
	OpenShift runs on your choice of infrastructure
	Nodes are instances of RHEL where apps will run
	App services run in docker containers on each node
	Pods run one or more docker containers as a unit
	Masters leverage kubernetes to orchestrate nodes / apps
	Master provides authenticated API for users & clients
	Master uses etcd key-value data store for persistence
	Master provides scheduler for pod placement on nodes
	Pod placement is determined based on defined policy
	Services allow related pods to connect to each other
	Management/Replication controller manages the pod lifecycle
	What if a pod goes down?
	OpenShift automatically recovers and deploys a new Pod
	Pods can attach to shared storage for stateful services
	Routing layer routes external app requests to pods
	Developers access openShift via web, CLI or IDE
	New Storage Capabilities for stateful applications
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Source 2 Image Walk Through
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

