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What we tried to resolve

● Need a way to interact with our resources
● Should be easily readable by a non-developer audience
● We don’t want to do some shell scripting on top of our CLI



Why Ansible?

Ansible was already popular in the team
● We use it to manage the production environment
● Well integrated in our CI/CD chain

Our users were already
● Familiar with it
● Or willing to learn

Lingua franca internally for the deployment of the product deployment
● Ceph-Ansible
● OpenShift-Ansible
● etc



So we will prepare our own modules



But! The uri module already does that?!

- name: Create a JIRA issue

  uri:

    url: https://your.jira.example.com/rest/api/2/issue/

    method: POST

    user: your_username

    password: your_pass

    body: "{{ lookup('file','issue.json') }}"

    force_basic_auth: yes

    status_code: 201

    body_format: json



uri was not an option (1/2)

● Authentication layer
○ We use AWS Signature Version 4







uri was not an option (2/2)

● Authentication layer
○ We use AWS Signature Version 4

● Imply boilerplate code
○ to handle errors
○ format some parameters

● ...
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Our API

● Very generic REST API
● 10 =~ resources
● We use the standard REST verbs



Our API: list

GET http://srv/api/v1/roles

http://srv/api/v1/roles


Our API: list

POST http://srv/api/v1/roles

Content-Type: application/json

{

    “Name“: “boby”

}

http://srv/api/v1/roles


Our API: get

GET http://srv/api/v1/roles/$foo

http://srv/api/v1/roles


Our API: delete

DELETE http://srv/api/v1/roles/$foo

http://srv/api/v1/roles


From Ansible

You can adjust your ansible.cfg to include another module directory (library). e.g:

[defaults]
library            = /usr/share/dci/modules/



Python code sample

def main():

    resource_argument_spec = dict(

(blabla)

    )

    resource_argument_spec.update(authentication_argument_spec())

    module = AnsibleModule(

        argument_spec=resource_argument_spec,

        required_if=[['state', 'absent', ['id']]]

    )

    context = build_dci_context(module)

    action_name = get_standard_action(module.params)

    role = DciRole(module.params)

    action_func = getattr(role, 'do_%s' % action_name)

    http_response = run_action_func(action_func, context, module)

    result = parse_http_response(http_response, dci_role, context, module)

    module.exit_json(**result)



How to share code between modules?

If you have several modules like us, you may want to share some code between them. The 
module_utils directory can be handle:

[defaults]
library            = /usr/share/dci/modules/
module_utils       = /usr/share/dci/module_utils/



How to share code between modules?

In our case, we share a dci_common.py for:
● Error handling
● Boilerplate for the different actions (delete, list, get, update, etc)
● Authentication
● And argument parsing



Idempotence

Reentrancy is import (much like a regular playbook)

You should be able to rerun the same module with the same parameters.



Documentation

Ansible-doc will read your module documentation.

https://docs.ansible.com/ansible/2.7/dev_guide/developing_modules_documenting.html

https://docs.ansible.com/ansible/2.7/dev_guide/developing_modules_documenting.html


Testing (1/2)

● Hard to do unit-testing
○ We actually gave up

● We redeploy an testing environment
○ Molecule is not an option AFAIK

● “Unit-testing” through a series of task/assert
○ more like integration testing with a limited scope

● Functional testing
○ A playbook to 
○ Serie of playbook


