
How to drive
your

webservices
with Ansible

Some context

3

What we tried to resolve

● Need a way to interact with our resources
● Should be easily readable by a non-developer audience
● We don’t want to do some shell scripting on top of our CLI

Why Ansible?

Ansible was already popular in the team
● We use it to manage the production environment
● Well integrated in our CI/CD chain

Our users were already
● Familiar with it
● Or willing to learn

Lingua franca internally for the deployment of the product deployment
● Ceph-Ansible
● OpenShift-Ansible
● etc

So we will prepare our own modules

But! The uri module already does that?!

- name: Create a JIRA issue

 uri:

 url: https://your.jira.example.com/rest/api/2/issue/

 method: POST

 user: your_username

 password: your_pass

 body: "{{ lookup('file','issue.json') }}"

 force_basic_auth: yes

 status_code: 201

 body_format: json

uri was not an option (1/2)

● Authentication layer
○ We use AWS Signature Version 4

uri was not an option (2/2)

● Authentication layer
○ We use AWS Signature Version 4

● Imply boilerplate code
○ to handle errors
○ format some parameters

● ...

Our final current technical stack

Web UI

REST API

Control Server

Ansible modules CLI

Python library

Ansible
playbook

Our final current technical stack

Web UI

REST API

Control Server

Ansible modules CLI

Python library

Ansible
playbook

Our API

● Very generic REST API
● 10 =~ resources
● We use the standard REST verbs

Our API: list

GET http://srv/api/v1/roles

http://srv/api/v1/roles

Our API: list

POST http://srv/api/v1/roles

Content-Type: application/json

{

 “Name“: “boby”

}

http://srv/api/v1/roles

Our API: get

GET http://srv/api/v1/roles/$foo

http://srv/api/v1/roles

Our API: delete

DELETE http://srv/api/v1/roles/$foo

http://srv/api/v1/roles

From Ansible

You can adjust your ansible.cfg to include another module directory (library). e.g:

[defaults]
library = /usr/share/dci/modules/

Python code sample

def main():

 resource_argument_spec = dict(

(blabla)

)

 resource_argument_spec.update(authentication_argument_spec())

 module = AnsibleModule(

 argument_spec=resource_argument_spec,

 required_if=[['state', 'absent', ['id']]]

)

 context = build_dci_context(module)

 action_name = get_standard_action(module.params)

 role = DciRole(module.params)

 action_func = getattr(role, 'do_%s' % action_name)

 http_response = run_action_func(action_func, context, module)

 result = parse_http_response(http_response, dci_role, context, module)

 module.exit_json(**result)

How to share code between modules?

If you have several modules like us, you may want to share some code between them. The
module_utils directory can be handle:

[defaults]
library = /usr/share/dci/modules/
module_utils = /usr/share/dci/module_utils/

How to share code between modules?

In our case, we share a dci_common.py for:
● Error handling
● Boilerplate for the different actions (delete, list, get, update, etc)
● Authentication
● And argument parsing

Idempotence

Reentrancy is import (much like a regular playbook)

You should be able to rerun the same module with the same parameters.

Documentation

Ansible-doc will read your module documentation.

https://docs.ansible.com/ansible/2.7/dev_guide/developing_modules_documenting.html

https://docs.ansible.com/ansible/2.7/dev_guide/developing_modules_documenting.html

Testing (1/2)

● Hard to do unit-testing
○ We actually gave up

● We redeploy an testing environment
○ Molecule is not an option AFAIK

● “Unit-testing” through a series of task/assert
○ more like integration testing with a limited scope

● Functional testing
○ A playbook to
○ Serie of playbook

