Managing Ansible codebase

Mohammed Naser

S whoami

Mohammed Naser

Follow me on Twitter. @_mnaser

Using Ansible in production to automate all the things for a few years
Ansible OpenStack modules maintainer

e CEO @ VEXXHOST, Inc.
e OpenStack Technical Committee Chair
e OpenStack Ansible Project Team Lead

We're hiring.

If you like Ansible and like working in open
source upstream projects, let's chat:
https://vexxhost.com/company/careers/

Managing Ansible codebase

Using roles

e Role selection criteria:

o Does it already exist and solve your problem? Use it.
o Does it exist but partly solves your problem? Fix it upstream.
o Does it not exist at all and covers open source software? Write and open source it.

Always pin your roles, never point to tags or branches.

Make sure to always prefix your variables.

Vendor your roles .. if you can.

If someone decides to change their role to be a “shell: rm -rfv /" ...

Use roles_path

e It can be difficult to start identifying site-local roles vs vendored roles
roles path = ./vendor-roles:./roles

e By default, Ansible galaxy installs to the first path, so "ansible-galaxy install
-r requirements.yaml” will install your roles into "./vendor-roles

Inventory

e Don't use static inventory
e If you'rein a cloud, there's plenty of inventory plugins
e If you're on bare metal, you can probably link to your DCIM (netbox, etc)

e If you're managing the list of servers you have in a text file...
e Decouple that.

shell is the devil

e Don't use shell.
e Check if an Ansible module exists first (upstream)
o If it exists, but not in your release, you can pop it inside “library™ in your playbook.

e Check if an Ansible role exists with that module
o You can simply install the role and include it to make it available
o You can install that role with ansible-galaxy and use ansible.cfg to point to the “library’
folder. Or Ansible collections?!
e Don't like Python? Did you know you can write modules in any language?
o Ansible just needs to execute it and get JSON output.

ansible-1int is your friend

e ansible-lint has improved a lot lately

e It has alot of good and best practices, follow them.

e Newer releases since the Ansible announcement has resulted in huge
improvements in making the roles that pass ansible-lint much more
dependable/reliable

e Things like retries when hitting network, etc

mitogen is fast, really, really, fast.

e Mitogen is a super interesting tool that helps speed up Ansible

e It runs a small process on the remote host and ‘avoids’ having to load
python for *every* single module

e Itincludes ‘stackable’ connection drivers which allow you to easily use
jumpboxes or run Ansible against Docker/LXC/nspawn containers

e Works 99.99% of the time, unless you have some really odd tasks.

e SUPER beneficial if you have high latency

delegate to all the time

e Avoid cluttering your target host.

e OpenStack Ansible example:

We need to run tasks that depend on openstacksdk being deployed

We don’t want to install openstacksdk everywhere.

We install Ansible inside venv at /opt/ansible-runtime

We deploy all needed Python packages there

Delegate those API-calls to local deploy node instead of the remote one

o O O O O

ldempotent roles

e Arole should be able to run a million times without changing a thing.
e This goes back to not using shell.
e If you're doing CI, run the role twice, make sure no changes happen

Molecule all the roles

TDD is a thing, it's a really good thing.

Use TDD with your Ansible roles, ensure a state and make sure it gets there
Molecule has built-in test framework that can test on a variety of systems
It also includes idempotency checks.

Playbook per role

e Write one single playbook for every role you have

e Builda site.yaml which includes all of your playbooks for all roles

e Run site.yaml when you want to ensure convergence, run individual
playbooks when you want to deploy a specific component

include role for DRY-ness

e Don't repeat code, ever.
e Sometimes, you'll notice you do something often

e OpenStack Ansible example:
o We install from source, we have to create a systemd unit
o We used to have a systemd file for every single project that we had to keep in sync
o Every time we needed to change, requires 40-50 patches
o We created systemd_service role, we include_role that and now we can make changes

without going back over and over again.

Beware of check mode

e Not all modules support check_mode
e It canresult in a destructive behaviour if you run with the assumption that

check mode won't change anything.
e Something to keep in mind.

Gather facts on-demand

e Gathering facts is probably one of the longer things in a playbook run.

e Italsoisn't always necessary.
e You can manually run the setup module inside your role, filtering specific

things to pull up.

include vars atthe start, always

e If you support multiple platforms, this is the cleanest way to manage it.

- name: Gather variables for each operating system
include vars: "{{ item }}"
with first found:
- "{{ ansible distribution | lower }}-{{ ansible distribution version | lower }}.yml"

- "{{ ansible distribution | lower }}-{{ ansible distribution major version | lower }}.yml"

- "{{ ansible os family | lower }}-{{ ansible distribution major version | lower }}.yml"
- "{{ ansible distribution | lower }}.yml"
- "{{ ansible os family | lower }}-{{ ansible distribution version.split('.')[O0] }}.yml"

- "{{ ansible os family | lower }}.yml"
tags:

- always

tags speed things up

e Use proper tagging, it helps your role consumers, helps you speed up the
development process.

e Use always for any fact collection tasks

e Prefix your tags with your role name and document them

e Example if you had an ara role
o Tagscouldbe:ara-config, ara-install, etc.

with items isn’t always the best

e When using with_items, Ansible has to re-run that entire task for every
single iteration.

e For quite a few modules, it is possible to merge work, such as commonly,
for things like package managers

e yum/apt/etc takes a list or string of packages in ‘name’. Using with_items
will install them *one* by *one*. Using a list will run a single transaction.

e WARNING: Ansible used to ‘squash’ with items with the yum module. It
now recommends you just provide a list.

Q&A

We're hiring.

If you like Ansible and like working in open
source upstream projects, let's chat:
https://vexxhost.com/company/careers/

