
Managing Ansible codebase
Mohammed Naser

$ whoami

● Mohammed Naser
● Follow me on Twitter: @_mnaser
● Using Ansible in production to automate all the things for a few years
● Ansible OpenStack modules maintainer

● CEO @ VEXXHOST, Inc.
● OpenStack Technical Committee Chair
● OpenStack Ansible Project Team Lead

We’re hiring.

If you like Ansible and like working in open
source upstream projects, let’s chat:
https://vexxhost.com/company/careers/

Managing Ansible codebase

Using roles

● Role selection criteria:
○ Does it already exist and solve your problem? Use it.
○ Does it exist but partly solves your problem? Fix it upstream.
○ Does it not exist at all and covers open source software? Write and open source it.

● Always pin your roles, never point to tags or branches.
● Make sure to always prefix your variables.
● Vendor your roles .. if you can.
● If someone decides to change their role to be a `shell: rm -rfv /` ...

Use roles_path

● It can be difficult to start identifying site-local roles vs vendored roles

roles_path = ./vendor-roles:./roles

● By default, Ansible galaxy installs to the first path, so `ansible-galaxy install
-r requirements.yaml` will install your roles into `./vendor-roles`

Inventory

● Don’t use static inventory
● If you’re in a cloud, there’s plenty of inventory plugins
● If you’re on bare metal, you can probably link to your DCIM (netbox, etc)

● If you’re managing the list of servers you have in a text file…
● Decouple that.

● Don’t use shell.
● Check if an Ansible module exists first (upstream)

○ If it exists, but not in your release, you can pop it inside `library` in your playbook.

● Check if an Ansible role exists with that module
○ You can simply install the role and include it to make it available
○ You can install that role with ansible-galaxy and use ansible.cfg to point to the `library`

folder. Or Ansible collections?!

● Don’t like Python? Did you know you can write modules in any language?
○ Ansible just needs to execute it and get JSON output.

shell is the devil

● ansible-lint has improved a lot lately
● It has a lot of good and best practices, follow them.
● Newer releases since the Ansible announcement has resulted in huge

improvements in making the roles that pass ansible-lint much more
dependable/reliable

● Things like retries when hitting network, etc

ansible-lint is your friend

● Mitogen is a super interesting tool that helps speed up Ansible
● It runs a small process on the remote host and ‘avoids’ having to load

python for *every* single module
● It includes ‘stackable’ connection drivers which allow you to easily use

jumpboxes or run Ansible against Docker/LXC/nspawn containers
● Works 99.99% of the time, unless you have some really odd tasks.
● SUPER beneficial if you have high latency

mitogen is fast, really, really, fast.

● Avoid cluttering your target host.
● OpenStack Ansible example:

○ We need to run tasks that depend on openstacksdk being deployed
○ We don’t want to install openstacksdk everywhere.
○ We install Ansible inside venv at /opt/ansible-runtime
○ We deploy all needed Python packages there
○ Delegate those API-calls to local deploy node instead of the remote one

delegate_to all the time

● A role should be able to run a million times without changing a thing.
● This goes back to not using shell.
● If you’re doing CI, run the role twice, make sure no changes happen

Idempotent roles

● TDD is a thing, it’s a really good thing.
● Use TDD with your Ansible roles, ensure a state and make sure it gets there
● Molecule has built-in test framework that can test on a variety of systems
● It also includes idempotency checks.

Molecule all the roles

● Write one single playbook for every role you have
● Build a site.yaml which includes all of your playbooks for all roles
● Run site.yaml when you want to ensure convergence, run individual

playbooks when you want to deploy a specific component

Playbook per role

● Don’t repeat code, ever.
● Sometimes, you’ll notice you do something often
● OpenStack Ansible example:

○ We install from source, we have to create a systemd unit
○ We used to have a systemd file for every single project that we had to keep in sync
○ Every time we needed to change, requires 40-50 patches
○ We created systemd_service role, we include_role that and now we can make changes

without going back over and over again.

include_role for DRY-ness

● Not all modules support check_mode
● It can result in a destructive behaviour if you run with the assumption that

check mode won’t change anything.
● Something to keep in mind.

Beware of check_mode

● Gathering facts is probably one of the longer things in a playbook run.
● It also isn’t always necessary.
● You can manually run the setup module inside your role, filtering specific

things to pull up.

Gather facts on-demand

● If you support multiple platforms, this is the cleanest way to manage it.

- name: Gather variables for each operating system

 include_vars: "{{ item }}"

 with_first_found:

 - "{{ ansible_distribution | lower }}-{{ ansible_distribution_version | lower }}.yml"

 - "{{ ansible_distribution | lower }}-{{ ansible_distribution_major_version | lower }}.yml"

 - "{{ ansible_os_family | lower }}-{{ ansible_distribution_major_version | lower }}.yml"

 - "{{ ansible_distribution | lower }}.yml"

 - "{{ ansible_os_family | lower }}-{{ ansible_distribution_version.split('.')[0] }}.yml"

 - "{{ ansible_os_family | lower }}.yml"

 tags:

 - always

include_vars at the start, always

● Use proper tagging, it helps your role consumers, helps you speed up the
development process.

● Use always for any fact collection tasks
● Prefix your tags with your role name and document them
● Example if you had an ara role

○ Tags could be: ara-config, ara-install, etc.

tags speed things up

● When using with_items, Ansible has to re-run that entire task for every
single iteration.

● For quite a few modules, it is possible to merge work, such as commonly,
for things like package managers

● yum/apt/etc takes a list or string of packages in ‘name’. Using with_items
will install them *one* by *one*. Using a list will run a single transaction.

● WARNING: Ansible used to ‘squash’ with_items with the yum module. It
now recommends you just provide a list.

with_items isn’t always the best

Q&A

We’re hiring.

If you like Ansible and like working in open
source upstream projects, let’s chat:
https://vexxhost.com/company/careers/

