

Kernel Dump Analysis made Quick
and Easy!

Alex Sidorenko <asid@hpe.com> (HPE)
Milan P. Gandhi <mgandhi@redhat.com> (Red Hat)

mailto:asid@hpe.com
mailto:mgandhi@redhat.com

What is kernel dump analysis?

● kernel dump/vmcore can be obtained during crash/panic or hang

● It allows developers to see what was happening on system in depth
as it is essentially a dump of memory contents (kernel pages plus
possibly some userspace pages)

● In many situations it is impossible to determine root cause of the
problem without a dump captured at the time of crash or hang

● Standard open-source tool for kernel dump/vmcore analysis is ‘crash’

Tools for kernel dump analysis

● ‘crash’ provides a number of commands and options to analyze
various information from a vmcore

● But effective use of ‘crash’ requires expertise and knowledge of
kernel internals

– It’s desirable to extend the functionality available in ‘crash’
environment to process many data structures programmatically
and present a summary

– In some situations doing a manual review is very time consuming
and impractical

e.g. analyzing hundreds of hung tasks, lvm volumes, SCSI
devices and multipath device maps etc.

Extensions for ‘crash’

● ‘crash’ can be dynamically extended by writing programs in C and linking
them in a special way. After that, the extensions can be loaded/unloaded by
builtin ‘extend’ command.

● Crash project page lists extensions that can be compiled and then used with
crash:

– https://people.redhat.com/anderson/extensions.html

● In addition to that, there are extensions languages, that let you write
programs without a need to compile/link them

crash> extend <path-to-loadable-crash-extension-file>

e.g.
crash> extend /cores/mpykdump.so

https://people.redhat.com/anderson/extensions.html

Extensions for ‘crash’

● Extension languages for ‘crash’:

The extensions for crash are typically written in one of the following two
languages

● EPPIC (Embeddable Pre-Processor and Interpreter for C)
– A replacement of an older project, SIAL (Simple Image Access Language)
– Useful for writing small tools, but problematic for big projects. It is included as

part of ‘crash’ distributions

● PyKdump - Python bindings to GDB/crash internals

EPPIC is very useful for kernel developers as they already know C. But it is
not very good for big projects.

In contrast, PyKdump needs learning Python language but provides a number
of features that make it a premier choice even for very large projects.

Features of ‘PyKdump’

● More scalable:

– Programs written in pykdump could be split in multiple files and/or
libraries, and time required to load/unload these scripts is reasonable
even for the huge projects

– No need to recompile the whole extension just for a small change in
program created under this framework

● Based upon Python 3, so all the features available in Python can be
utilized in programs

● Error processing is very easy due to the exception handling
mechanism derived from Python

● An ability to execute ‘crash’ commands and parse their output within
programs for further processing

Features of ‘PyKdump’

● Programs can make runtime decisions based upon symbolic info from
vmlinux

– Same extension and programs can process vmcores collected from
different Linux kernel versions

Currently the programs available in PyKdump framework can process
dumps collected from RHEL 5.6+/RHEL 6/7, Fedora 17+, OEL 6/7, SLES
10+, Ubuntu, and most latest upstream kernel versions

– Programs written under other frameworks usually need much more effort
to cope with data structure changes across different kernel versions

● Allows developers to automate their analysis steps, so most of the
analysis for a new vmcore can be done by program itself

● Developers can add custom checks in programs and warn users
about potential problems that are easy to miss while inspecting
vmcore manually

‘PyKdump’ Design

● ‘PyKdump’ maps C-structures used with Linux kernel to Python
objects

For example:

– It maps C ‘struct’ and ‘union’ by creating corresponding python objects
with attributes matching the respective field names of C struct/union

These Python objects are used within programs created in PyKdump
framework to analyze the struct/union internals, its fields etc.

– Other C data types are mapped to similar Python types e.g. C ‘int’ is
mapped to Python ‘integer’

– Most operators in C are mapped to similar Python operators

‘PyKdump’ Design

● In “C” we have two dereference operators: ‘.’ and ‘->’

● As Python does not have a concept of pointers, there is just ‘.’
operator. But we can understand what is needed based on data type
and context.

Assuming that ‘ptr’ is a pointer to struct with its fields being other
structs/pointers, a dereference chain might look like:

For ‘C’

ptr→a.b.c→d

For ‘Python’ – it will deduce what is needed based on fields definitions

ptr.a.b.c.d

‘PyKdump’ built-in functions

● To ease the analysis of different structures within kernel, ‘PyKdump’
provides built-in functions according to mapping rules

● These functions allows programmers to read kernel objects, iterate
through linked lists/trees, execute crash commands, etc.

● Two most important pykdump API functions are:

– readSU
● Read struct/union based on its type and address provided as

arguments

– readSymbol
● Get a Python object representing a kernel object defined as a global

variable in C. Depending on C-definition, this subroutine can return a
struct/union, array, pointer, string etc.

‘PyKdump’ built-in functions

● Some other useful PyKdump API subroutines:

– exec_crash_command_bg
● Allows the programs to execute crash commands and parse its

output. They are executed in background and a timeout value can be
specified (for big vmcores and pathologic cases, some crash
commands can take up to 30 minutes of CPU)

– EnumInfo
● Checks the enum declaration and returns the value from specified

position

– member_size
● Used to inspect size of structure/union member

– member_offset
● Used to find an offset of structure/union member

‘PyKdump’ built-in functions

● How to use PyKdump API subroutines?

● Let us look at an example for ‘readSU’ function mentioned in previous
slides

Syntax:

readSU("<<struct_name>>", <<address>>)

e.g

readSU("struct hd_struct", int(bd_disk.part0))

● 1st argument: The 1st argument to this function is struct name that

 we want to retrieve. For example, in above line, we

 are trying to retrieve ‘struct hd_struct’ from the

 address pointed by ‘bd_disk.part0’

● 2nd argument: This is an address of struct or variable from which

 we want to get the structure mentioned in 1st argument.

● Returns: Structure mentioned in 1st argument.

‘PyKdump’ built-in functions

● ‘readSU’

Example:

Below are the typical ‘crash’ commands used to get address of ‘struct hd_struct’ from
the ‘gendisk’ structure:

crash> dev -d|head
MAJOR GENDISK NAME REQUEST_QUEUE ...
 8 ffff8a3304a1ec00 sda ffff8a32f5842f58 ...
 8 ffff8a3308462000 sdb ffff8a32f5bf0000 ...

...

'hd_struct' is embedded inside 'gendisk' structure:

crash> struct gendisk -o|grep -i hd_struct
 [0x48] struct hd_struct part0;

 And now we can get address of' hd_struct' from 'gendisk':

crash> p &((struct gendisk *) 0xffff8a3304a1ec00)->part0
$2 = (struct hd_struct *) 0xffff8a3304a1ec48

‘PyKdump’ built-in functions

Example (cont’d)

● Using ‘readSU’ function for retrieving ‘hd_struct’ from ‘gendisk’ structure:

A pointer to ‘gendisk’ structure is stored in ‘block_device’:

crash> struct block_device -o|grep -i bd_disk
 [0x98] struct gendisk *bd_disk;

And ‘hd_struct’ is embedded inside ‘gendisk’ :

crash> struct gendisk -o|grep -i hd_struct
 [0x48] struct hd_struct part0;

From the *bd_disk pointer hd_struct could be retrieved as:

hd_struct = readSU(“struct hd_struct”, long(bd_disk.part0))

‘PyKdump’ built-in functions

Example (cont’d)

● A Python object is initialized to hold the contents of struct/union returned by built-in
functions. This Python object could then be used in programs to print its member
variables, inspect its contents etc:

● Information about ‘hd_struct’ can be printed as:

hd_struct = readSU(“struct hd_struct”, long(bd_disk.part0))

Above line will initialize Python object named ‘hd_struct’ that is mapped
to C structure ‘hd_struct’

print(hd_struct)

To print structure address in hexadecimal:

print(“{:x}”.format(hd_struct))

‘PyKdump’ built-in functions

● exec_crash_command_bg:

Syntax:

exec_crash_command_bg(“<<crash_command>>”)

e.g
exec_crash_command_bg(“sys”)

● 1st argument: One of the built-in crash commands
● Returns: Output of the crash command as a string

Parsing the output of ’sys’ command to verify
kernel version string:

for l in exec_crash_command_bg('sys').splitlines()[1:]:
 try:
 if (('RELEASE: ' in l) and ('2.6.32-' in l)):
 version = 'rhel6'
 elif (('RELEASE: ' in l) and ('3.10.0-' in l)):
 version = 'rhel7'
 except:
 pylog.warning("cannot parse:", l)

Checking structure definitions

● During Linux kernel development, definition of some structures can
change

● Crash extension programs need to be written in a way that can deal
with these changes, to be able to work with different kernels

● PyKdump solves this problem by providing subroutines for inspecting
structure/union properties, e.g. check whether a specific member
exists or not

● This could be done in several ways, e.g. using member_size function
discussed in next slides

● In addition, there are more advanced mechanisms such as
‘pseudoattributes’

Checking structure definitions

● For example, older version of Linux kernels had different name for member
variable ‘elevator_type’ present in ‘struct elevator_queue’

From latest upstream:

$ less include/linux/elevator.h
...
struct elevator_queue
{
 struct elevator_type *type;
...

Below patch had changed the definition for ‘elevator_queue’ as below:

$ git show 22f746e235a5c
...
@@ -90,10 +90,9 @@ struct elevator_type
 */
 struct elevator_queue
 {
- struct elevator_ops *ops;
+ struct elevator_type *type;
 void *elevator_data;
 struct kobject kobj;
- struct elevator_type *elevator_type;

Checking structure definitions

● member_size function could be used to verify if ‘struct elevator_queue’
has a member named ‘elevator_type’ or ‘type’

● If the specific member does not exist in structure, then member_size
returns ‘-1’

● This allows the same program written in PyKdump framework to be usable
with kernel versions shipped across multiple Linux distributions, and
upstream kernels

sdev_q = readSU("struct request_queue", long(sdev.request_queue))

if (member_size("struct elevator_queue", "elevator_type") != -1):
 elevator_name = sdev_q.elevator.elevator_type.elevator_name

elif(member_size("struct elevator_queue", "type") != -1):
 elevator_name = sdev_q.elevator.type.elevator_name

else:
 elevator_name = "<Unknown>"

Exception handling

● PyKdump uses exception handling mechanism derived from Python

● A well-written program should be able to handle unexpected situations,
reporting potential issues instead of just terminating

● For example: during some of the storage failure events, SCSI paths to the
multipath device are lost, and these paths may be in process of deletion
from system. Some of the structures used by these failed paths may be
invalid, or already freed due to kernel bug, race conditions etc.

● An access to such unreliable structure could case failure/errors in program.
Such events could be handled easily by ‘try’, ‘except’ blocks

e.g

try:
 temp_scsi_device = readSU("struct scsi_device",
 long(temp_pgpath.path.dev.bdev.bd_disk.queue.queuedata))
except:
 pylog.warning("Error in processing sub paths for multipath device:", name)
 return

Ready to use programs

● The ‘PyKdump’ project currently provides number of very useful
mature programs for vmcore analysis that can be used immediately:

● xportshow - Displays information about connections and sockets
● crashinfo - Shows general information about kernel dump
● scsishow - Shows SCSI subsystem information from the dump
● dmshow - Shows device-mapper, multipath, lvm information
● taskinfo - Prints processes status information as captured at

 the time of crash
● nfsshow - Prints NFS information from kernel dump
● hanginfo - Summarizes information about hung tasks

detected in vmcore

Obtaining PyKdump

● A latest stable and ready to use binary for PyKdump is available for
download from it’s project page

– https://sourceforge.net/projects/pykdump/

● If you want to build PyKdump from sources, you need the following:

– Source code for Python-3 or above

– Source code for ‘crash’ utility

– ZIP utility

● Detailed steps to manually build the PyKdump binary

https://sourceforge.net/p/pykdump/wiki/Building%20From%20GIT/

Once the compilation process is completed successfully, the
ready to use ‘mpykdump.so’ binary would be available in
‘Extension’ directory

https://sourceforge.net/projects/pykdump/
https://sourceforge.net/p/pykdump/wiki/Building%20From%20GIT/

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

