
Introduction to pulp-operator

Mike DePaulo
mikedep333@redhat.com
@mikedep333 [GitHub, Freenode]

mailto:mikedep333@redhat.com

Talk Overview
● Bottom-Up (concepts and our usage)

○ Pulp Containers
○ Pulp Kubernetes manifests
○ Pulp Operator

● Related tooling:
○ plugin-template.git (CI)
○ pulp-insta-demo.sh
○ pulp-demo.git

● Future development

Pulp Containers: pulpcore.git/containers

Why Containers instead of VMs?
● Performance advantages

○ lxc model

● Cloud VMs changed paradigm
○ Separate data from code

● Application packaging & distribution
○ The real reason
○ Eliminating fights between devs and ops
○ Images vs containers

Proper container design
● Single process/service
● Microservices made possible
● Increases need for orchestration layer (Kubernetes)

Dockerfiles
● Like an RPM spec
● Horribly inflexible syntax
● Our Dockerfile is now jinja2-templated

Jinja2-Rendered Dockerfile (abridged) (1 of 3)
FROM fedora:30

RUN echo 'LANG="en_US.UTF-8"' > /etc/locale.conf

ENV LANG=en_US.UTF-8
ENV PYTHONUNBUFFERED=0
ENV DJANGO_SETTINGS_MODULE=pulpcore.app.settings
ENV PULP_SETTINGS=/etc/pulp/settings.py

RUN dnf -y update && \
dnf -y install wget git && \
dnf -y install libxcrypt-compat && \
dnf -y install python3-psycopg2 && \
dnf -y install glibc-langpack-en && \
dnf -y install python3-createrepo_c && \
dnf -y install libmodulemd-devel && \
dnf -y install python3-libmodulemd && \
dnf -y install libcomps-devel && \
dnf -y install python3-libcomps && \
dnf clean all

RUN ln -s /usr/bin/python3 /usr/bin/python
RUN ln -s /usr/bin/pip3 /usr/local/bin/pip

Jinja2-Rendered Dockerfile (abridged) (2 of 3)
RUN mkdir -p /etc/pulp

RUN pip install gunicorn

RUN pip install pulpcore
RUN pip install pulpcore[postgres]

RUN pip install pulpcore-plugin

RUN pip install pulp-certguard
RUN pip install pulp-file
RUN pip install pulp-ansible
RUN pip install pulp-cookbook
RUN pip install pulp-docker
RUN pip install pulp-maven
RUN pip install pulp-python
RUN pip install pulp-rpm

Jinja2-Rendered Dockerfile (abridged) (3 of 3)
COPY pulpcore/containers/images/pulp/container-assets/wait_on_postgres.py /usr/bin/wait_on_postgres.py
COPY pulpcore/containers/images/pulp/container-assets/wait_on_database_migrations.sh /usr/bin/wait_on_database_migrations.sh
COPY pulpcore/containers/images/pulp/container-assets/pulp-common-entrypoint.sh /pulp-common-entrypoint.sh
COPY pulpcore/containers/images/pulp/container-assets/pulp-api /usr/bin/pulp-api
COPY pulpcore/containers/images/pulp/container-assets/pulp-content /usr/bin/pulp-content
COPY pulpcore/containers/images/pulp/container-assets/pulp-resource-manager /usr/bin/pulp-resource-manager
COPY pulpcore/containers/images/pulp/container-assets/pulp-worker /usr/bin/pulp-worker

ENTRYPOINT ["/pulp-common-entrypoint.sh"]

Examples of image name & tag?
● registry/repository/image:tag

● quay.io/pulp/pulp:latest
● quay.io/mikedep333/pulpcore:3.0.0rc4
● localhost/pulp:3.0.0-pr123

○ pulp:3.0.0-pr123

● Remember: image vs container

Tooling around the dockerfile
● Example vars.yaml used for template:

○ - pulp_master_plugins_master:
○ image_name: pulp
○ tag: latest
○ pulpcore: git+https://github.com/pulp/pulpcore.git#egg=pulpcore
○ pulpcore_plugin: git+https://github.com/pulp/pulpcore-plugin.git
○ plugins:
○ - "git+https://github.com/pulp/pulp-certguard.git"
○ - "git+https://github.com/pulp/pulp_file.git"
○ - "git+https://github.com/pulp/pulp_ansible.git"

● vars.yaml also accepts:
○ Stable pip install strings like “pulp_file”
○ ./pulp_file (required a lot of work)

● Ansible build.yaml
○ Generates Dockerfile from vars.yaml & Dockerifle.j2
○ Calls `docker build` (or `buildah`)

https://github.com/pulp/pulp_ansible.git

4 containers in one image?
“RUN” not specified.

4 scripts - 1 for each type of container

● pulp-api
● pulp-content
● pulp-worker
● pulp-resource-manager

What about collectstatic & migrations
● No database available at container build time
● Currently done via pulp-api script

Pulp Kubernetes manifests: pulp-operator.git

Why add orchestration on top of container runtimes?
● Define relationships between single service/process-containers
● Multiple container hosts
● Storage and networking not fully fleshed out
● Running ensures daemon desired state of overall application is both reached

& maintained

Kubernetes (“K8s”) for Orchestration (1 of 2)
● Container infrastructure

○ Storage
○ Networking
○ Compute

● Objects include:
○ Deployments
○ Containers/Pods
○ Services / Routes
○ (Persistent) Volume Claims

● Understands:
○ Services
○ Their relationships
○ Whether they are up or down

Kubernetes (“K8s”) for Orchestration (2 of 2)
● Uses “namespaces” to isolate apps
● Components:

○ Controller (running daemon / management server)
○ Nodes (managed container hosts)

● Configuration files for defining Kubernetes objects:
○ Declarative
○ Define desired state of the objects
○ Often says “use generic interface”, and lets infra use desired implementation plugin

Kubernetes Distributions
● From most featured to least-featured:

○ Openshift
○ Upstream Kubernetes / minikube
○ K3s (used by pulp-operator CI, plugin-template CI, and pulp-insta-demo.sh)

● Note: There are many more

pulp-api.deployment.yaml (1 of 3)
apiVersion: v1
kind: Deployment
metadata:
 name: pulp-api
 namespace: "{{ project_name }}"
 labels:
 app: pulp-api
spec:
 replicas: {{ pulp_api.replicas }}
 selector:
 matchLabels:
 app: pulp-api
 template:
 metadata:
 labels:
 app: pulp-api

pulp-api.deployment.yaml (2 of 3)
...
spec:
 ...
 template:
 ...
 spec:
 containers:
 - name: pulp-api
 image: "{{ registry }}/{{ project }}/{{ image }}:{{ tag }}"
 imagePullPolicy: "IfNotPresent"
 args: ["pulp-api"]
 env:
 # TODO: Replace with k8s secrets
 - name: PULP_ADMIN_PASSWORD
 value: "password"
 ports: # (related to “service” object)
 - protocol: TCP
 containerPort: 24817

pulp-api.deployment.yaml (3 of 3)
...
spec:
 ...
 template:
 ...
 spec:
 containers:
 - name: pulp-api
 ...
 volumeMounts:
 - name: pulp-server
 mountPath: "/etc/pulp/"
 - name: pulp-file-storage
 readOnly: false
 mountPath: "/var/lib/pulp"
 volumes:
 - name: pulp-server
 configMap:
 name: pulp-server
 items:
 - path: settings.py
 key: settings.py
 - name: pulp-file-storage
 persistentVolumeClaim:
 claimName: pulp-file-storage

pulp-operator: pulp-operator.git

Why an operator?
● Kubernetes merely ensures the desired state of the application
● Manifests are static; no variables as input to desired state

○ If you upload a newer version of the same manifest, K8s will adjust the state

● Little flexibility in the desired state at runtime
○ A prominent exception: horizontal scaling

● An operator is a running container that manages variable state for things like
upgrades & backups

● User settings in a “custom resource” (cr) yaml (a K8s object)
● A fully-featured operator provides an experience comparable to:

○ An app store app (OperatorHub.io)
○ A managed cloud service

https://operatorhub.io/

Features of an Operator

Some cool features we have already
● # of pulp-workers & pulp-content instances can be defined ahead of time or

manually updated at runtime
● pulp-content instances receive evenly distributed load
● /var/lib/pulp/ can be expanded at runtime (if infra supports expanding it)
● Entire installation (several plugins) happens in only a few minutes

User experience using pulp-operator
● Already have K8s setup
● Clone pulp-operator git repo
● Copy & modify our “custom resource”

deploy/crds/pulpproject_v1alpha1_pulp_cr.default.yaml ->
deploy/crds/pulpproject_v1alpha1_pulp_cr.yaml

○ We have a couple of pre-defined cr.yaml files as well

● ./up.sh (uses `kubectl`)
○ pulp-operator image gets downloaded & run
○ pulp-operator pulls in/runs postgres, redis, and pulp images

● State can be viewed graphically using K8s dashboard (WebGUI)

What is defined where?
● pulpcore.git/containers:

○ Static environment variables
○ RPM dependencies
○ Which plugins get installed and from which pip install strings (via variables) or folders
○ Database initialization
○ What scripts/command get run before starting the Pulp services
○ Mapping “pulp-api”, etc. to actual commands
○ Ports used

● Pulp-operator.git
○ /etc/pulp/settings.py
○ postgres
○ redis
○ networking / storage
○ number of containers (instances)
○ Calling “pulp-api”, etc.

Related Tooling

plugin-template (CI)
● Install.sh:

○ Creates pulpcore.git/containers/ vars.yaml
○ Builds “pulp_foo” image
○ Creates operator cr.yaml
○ calls from pulp-operator.git:

■ .travis/k3s-install.sh: Install & configure k3s
■ up.sh: bring up containers
■ .travis/pulp-operator-check-and-wait.sh: Waits till containers come up; checks status

page; prints which prior steps failed

● Script.sh:
○ Uses aliases like $CMD_PREFIX to install temporary testing tools into pulp-api container &

run unit tests
○ pytest calls pulp-smash; which can now reach into pulp-api container as well

Pulp-operator: pulp-insta-demo.sh
● 103-line wrapper around .travis/k3s-install.sh & up.sh
● Can be downloaded directly; will download pulp-operator git repo
● Configuring system forbidden; very few deps; risk of not working properly
● Travis CI tests on Ubuntu 16.04
● Manually tested via Vagrant on Ubuntu 16.04 / 18.04, CentOS 7 & Fedora
● User experience:

○ Run script & review output
○ k3s uninstall script services as entire uninstaller

● On homepage; blog post to be written

pulp-demo.git
● Specifically meant for demoing pulp at conferences
● After Fedora Workstation is installed on a NUC and accessible via SSH:

○ Installs minikube
○ Installs related tooling like httpie
○ Configures OS; even GNOME shortcut to K8S dashboard
○ You can then run pulp-operator’s ./up.sh

Future Development

Things that should be done the Kubernetes way
● nginx load-balancing
● pulp-settings needs to query the externally accessible hostname

○ `hostname` returns container private network hostname
○ Need new K8s object(s) for externally accessible service

Further CI
● Epic 5393
● pulp_foo image & 7-plugins “pulp” image based on “pulpcore”
● publish images (pulp-operator only one done so far)
● TBD: When to publish 7-plugins “pulp” image?

○ Wait for all 7 plugins to release & succeed?
○ We do not want newer versions of the image name to ever contain fewer content plugins.

● TBD: Versioned releases
○ What if we need to make operator/container changes after code release (like downstream

RPMs?)

● TBD: Let plugins provide snippets for a common Dockerfile, beyond just the
pip install string

○ Could become unmanageable or incompatible with eachother
○ RPM variable preferred

https://pulp.plan.io/issues/5393

Highlight of TODO before maturity model Phase 1
● Mostly in Epic 5132 (publish to OperatorHub)
● Need to make it work across a greater % of environments:

○ Mainly: Our K8S-managed storage requirement of “shared filesystem across every node” is
incompatible with many K8s clusters’ storage, like Ceph

● pulp-settings needs to query the externally accessible hostname
● Some permissions concerns
● Molecule CI

https://pulp.plan.io/issues/5132

Getting to phase 2 through 5
● 2 Epics on redmine need to be reworked for these
● The vision: “A kick-ass cluster for pulp”

Special thank you to:
● Eric Helms

○ Starting this entire sub-project
○ Working prototype against Pulp a year ago

● Dennis Kliban
○ Integration into CI over the summer
○ Feature development now

● SysEleven
○ Hosting a large production “metakube” cluster for us

Questions?

