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What is GTK+ ?
GTK+ is a fully featured toolkit for creating user interfaces. It relies on the Pango
library for text rendering, which provides excellent internationalization support.
GTK+ was designed with language bindings in mind, and can be used with many
programming languages, for example C, C++, Python, Perl, Java, Ada. Over time,
GTK+ has spun off a number of auxiliary libraries.

GLib is the low-level core library that forms the basis of GTK+ and GNOME. It pro-
vides data structure handling for C, portability wrappers, and interfaces for such
runtime functionality as an event loop, threads and dynamic loading. It also offers
support for character set conversion and Unicode handling.

GObject is an object system written in C with traditional features as inheritance, poly-
morphism and reference counting. It also contains a signal system for notification and
an object attribute system.

The ATK library provides a set of interfaces for accessibility. By supporting the ATK
interfaces, an application or toolkit can be used with such tools as screen readers,
magnifiers, and alternative input devices.

Pango is a library for layout and rendering of text, with an emphasis on internation-
alization. It forms the core of text and font handling for GTK+. Pango shields from
the details of the platforms native font system.

The GDK library provides a layer of abstraction that sits between GTK+ and the un-
derlying windowing system. Instead of making calls directly to the window system,
widgets call GDK when they need to draw to the screen or handle events. The GDK
rendering API pretty closely matches the Xlib API.

The GTK+ library contains the widgets which make up the toolkit, together with
supporting code, such as a theming system and drag-and-drop support.

GTK+ Widgets
GTK+ offers a pretty complete set of standard controls like menubars, toolbars, sta-
tusbars, entries, buttons, spinbuttons, labels. It also has a reasonable supply of layout
containers like tables and boxes, which are responsible for arranging their child wid-
gets on screen. Since 2.0, GTK+ also contains a number of more complex widgets fol-
lowing the model-view pattern: GtkTextView and GtkTreeView. Recently GtkCom-
boBox also joined the family of model-view widgets.

GTK+ History
GTK+ was started as toolkit for the GIMP around 96 and reached its first stable re-
lease in April 98. GTK+ 1.0 contained the basic widgets that were needed to support
the GIMP. The next stable release, 1.2, February 99 contained many new widgets
which made GTK+ a reasonable toolkit to choose for general application develop-
ment, it was no longer Gimp-centric. 1.2 was also the first release which featured a
separate GLib library.

After 1.2, GTK+ went into a long development cycle, during which a lot of things
were done. Text rendering was moved to use Pango, yielding first-class internation-
alization support. The object system was generalized and moved to GLib under the
name GObject. A backend separation was introduced in GDK, and the win32 back-
end was added. Two big new widgets, the text view and the tree view, were cre-
ated from scratch. Both feature a model-view architecture. During this 3 year period,
Gnome was eagerly waiting for GTK+ 2.0 to get ready, since Gnome 2.0 depended
on it. One of the lessons which the GTK+ team learned from the 2.0 release cycle
is to try to stick to shorter 9-12 month development cycles between stable releases.
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We haven’t reached that goal for all 2.x releases, but we have successfully avoided
multi-year development cycles since 2.0.

The releases after 2.0 had more of an incremental nature. The main new feature in
2.2 was multihead support, for traditional X11 multiscreen/multidisplay and Xin-
erama.One interesting aspect of the multihead support in GTK+ is that it allows you
to move windows between screens and displays, a feature which only few toolk-
its support today. The current stable release 2.4 features a new, much anticipated
new filechooser widget, as well as a new combobox, and some widgets which were
"brought home" from other places in the Gnome library stack.

To get an impression of the size of GTK+, here is a rough count of the lines of code
(created using David A. Wheelers sloccount utility). These numbers include GLib,
ATK, Pango and GTK+:

• 1.0 (Apr 98, ca 93.000 lines of code)

• 1.2 (Feb 99, ca 160.000 lines of code)

• 2.0 (Mar 02, ca 460.000 lines of code)

• 2.2 (Dec 02, ca 488.000 lines of code)

• 2.4 (Mar 04, ca 558.000 lines of code)

GTK 2.4 Additions
The new file chooser has different modes for opening files, opening directories and
saving files. What you can see here is the "file open" mode. You can also see that the
entry for manually entering the pathname is no longer shown in the dialog itself,
but has been relegated to a secondary dialog, which can be opened using the key
combination Control-L. This design decision is still hotly debated in some circles, but
it has lead to a much less cluttered file chooser UI. Note that the entry offers filename
completion with a completion popup, as commonly seen in web browser location
entries.

The new combo box widget features different styles, it supports the traditional op-
tionmenu style with a popup menu - which can now also be organized in columns, as
the screenshot shows. The alternative style is derived from the appearance of combo
boxes on Windows.

Current Goals of GTK+ development
The longterm goal for the development of GTK+ is to provide a complete platform for
the development of GUI applications. In order to achieve this, we have to close some
gaps. Some of the commonly used widgets which are currently missing in GTK+ are

• a model-view table widget

• an icon list, like the icon view seen in Nautilus and other file managers

• a dock widget as seen in IDEs

• a print dialog

• an about dialog

• wizards
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Implementations or at least prototypes for some of these widgets are already avail-
able somewhere in the Gnome library stack, and just need to be cleaned up and
moved to GTK+. For instance, there is an icon list widget called EggIconList in libegg,
and an about dialog named GnomeAbout in libgnomeui. In some other cases, the
available implementation will have to be reworked more throughly before they can
go into GTK+. An example of this is the print dialog. While there is an implemenation
in libgnomeprintui, the plan for a print dialog in GTK+ is to first move to Cairo as the
main rendering API, and then use the print support in Cairo. There are also several
dock widgets available in various parts of the Gnome library stack, which need to be
carefully compared to come up with a reasonable scope and feature set for a GTK+
dock widget. One complication of this particular widget is that there may actually
be several non-compatible sets of requirements for a dock widget, coming from the
use cases of IDEs and office style applications. Finally, some widgets will have to be
written from scratch. An example of this is the model-view table widget, although it
would be desirable to reuse parts of the tree view widget for it, for instance the cell
renderers.

Beyond simply adding more widgets, there are some important features which you
would expect in a modern toolkit, which are currently absent from GTK+. Among
them are:

• support for session management

• loading widget hierarchies from textual descriptions, like libglade does

• more flexible layout using width-for-height geometry management

User interface design keeps changing. Current trends like breaking up the window
metaphor, introducing transparency and animation throughout the UI, will force
GTK+ to evolve.

We are confident that we can achieve most of the goals mentioned so far while main-
taining binary compatibility with GTK+ 2.x.

GTK+ 2.4 maintenance

Fixing bugs
The focus of 2.4.x development is naturally bug-fixing, since it is the stable series.
New features will appear in GTK+ 2.6. Fixing bugs in a mature codebase like GTK+
is not always easy, as the following examples illustrate. Some bugs are even unfixable.
But still, an impressive number of bugs is fixed. During the 2.4 development phase
(December 2002 - March 2004), we fixed over 1000 bugs in the stable GTK+ 2.2.x
branch. This number was derived by counting references to bugzilla bug numbers in
the main ChangeLog files of GLib, Pango and GTK+, so the actual number may even
be a bit higher (due to bugs without bugzilla entries, and bugs in the documentation).

Borderline case

Focus drawing in buttons.

Some time ago, we noticed a bug in the size allocation function of GtkButton. The
visual effect of the bug is only noticable in styles which use wide lines to draw the
focus indicator, which is actually required for some accessability-oriented themes.
As you can see, the child of the button (which in the example is a color swatch) is
drawing over the focus indicator. The bug is simple to fix, but as a consequence,
buttons actually need more space, since they now reserve extra space for the focus
indicator. Immediately after 2.4.2 was released, the GIMP developers pointed out
that this change is problematic for the many small buttons used in the GIMP user
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interface. As a compromise, the button size allocation was changed again in 2.4.3 to
only request the extra space if the button can actually take the focus. This fixes the
issues noticed in the GIMP, since the problematic buttons there are not focusable, and
we haven’t heard complaints about the new behaviour from other GTK+ users.

Performance improvements
While the performance of GTK+ is reasonable on modern hardware, we are always
looking at ways to improve the percieved performance. Things we are currently look-
ing at include predictive exposes, unsetting the background when mapping win-
dows, and reducing the overhead of signal emissions. These patches will first appear
in the HEAD branch of GTK+ (which will eventually lead to 2.6), but it is not unlikely
that we backport them to GTK+ 2.4 after they have proven stable.

Predictive exposes

To understand what predictive exposes are and how they can help the performance
of menus, one has to know the normal sequence of events when a window is mapped:
The application sends a MapWindow request, which the X server sends on to the win-
dow manager. The window manager decides where to place the window, and sends
another MapRequest for the window to the X server. This time, the X server maps
the window and creates a MapNotify, followed by Expose events which cause the
application to draw the contents of the newly mapped window. You will notice that
this includes two roundtrips to the X server. But X also has the concept of override-
redirect windows, for which the window manager is not involved in the mapping
process. For these, there is no real need to wait for the Expose events before starting
to draw, since we know that they will be send. Thus, predicting the expose events
allows us to get rid of the context switch to the X server and back between popping
up the window and drawing it, which will make it less likely that some other process
gets scheduled in between.

Unsetting the background

When the X server maps a new window, it fills it with the background color or
pixmap, then sends Expose events and waits for the application to draw the con-
tents of the window. This can cause noticable flicker, e.g. when switching between
tabs in a GtkNotebook. Fortunately, X allows to set the background of a window to
None, and doesn’t do any initial filling when windows with background None are
mapped. This is not a problem for GTK+, which draws its own background color
anyway, and it completely eliminates the flickering when switching notebook pages.

Reduce signal emission overhead

GTK+ makes heavy use of signals. These Signals are a generic callback mechanism
implemented in GObject and have nothing to do with traditional Unix signals. Emit-
ting a signal involves analysing varargs function arguments, and marshalling them
in a form suitable for use by the connected callback function. Thus a signal emis-
sion has a considerable overhead when compared to a regular function call, and it be
worth to avoid the signal emission completely if there are no callbacks connected.

GTK+ 2.6 development
The next stable release of GTK+ will be 2.6, which is planned for December 2004. This
release will continue the theme of the 2.4 release, with some small additions, and a
focus on improving the new widgets from 2.4.

We are still improving the new file chooser, to make sure that it works really well. The
file chooser has produced and is continuing to produce an amazing number of bug
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reports and enhancement requests. We can’t possibly implement every feature that
people apparently want to see in a file chooser dialog. But a number of enhancements
are very likely to appear in 2.6. The file chooser will share the setttings controlling the
display of hidden and backup files, single vs. double click and the shown columns
with the Nautilus file manager. The bookmarks system will be made more convenient
by making it automatically maintain bookmarks for the most recently visited places.
In the save mode, applications will have a way to let the user select the format to save
in, as shown in the screenshot.

The new GtkComboBox widget needs a to gain number of features before it can fully
replace all uses of its predecessor, the GtkCombo widget. The most notable missing
features are separators, insensitive items and scrolling. Insensitive items are already
working in cvs HEAD, as the screenshot demonstrates.

A number of features have been prototyped already and are likely to find their way
into 2.6. These include commandline argument parsing support for GLib with the
goal of replacing the popt library currently used for this purpose in Gnome. There is
a prototype of an icon list widget under the name EggIconList in libegg. A progress
cell renderer based on the one found in the Epiphany has already been incorporated
in the HEAD branch of GTK+. We will probably also try to continue moving gen-
erally useful widgets from libgnomeui to GTK+. The candidates are a file chooser
entry, which is a combination of an entry with completion for filenames and a button
to bring up a file chooser dialog, an image or icon chooser, and a datetime widget,
which combines an entry for entering a date (and a time) with a button to bring up a
calendar widget.

Pango will make a detour from the release cycle of the other libraries. Pango 1.6 will
be released in time for Gnome 2.8. Its noteworthy features will include rotated text,
custom font decoders (i.e. use fonts without Unicode mapping).

The future
After the 2.6 release, we will concentrate on Cairo support in GDK. Cairo is a rela-
tively new graphics library that closely matches the future rendering needs of GTK+.
It is designed to be an easy to use 2D graphics library offering a rich set of capabilities
and multiple output backends.

The Cairo API is similar to PostScript. The example shows how to construct a path
from points. Cairo also has functions to create common types of paths like rect-
angles, arcs or circles. Cairo goes beyond PostScript by including complete alpha-
compositing (not shown in this simple example, but there are many more interesting
ones on http://cairographics.org).

In rough terms, the rendering capabilities of Cairo are comparable to those of Java
2D, SVG or PDF 1.4. In detail, Cairo doesn’t offer all that SVG or PDF offer, but that
is mostly due to their declarative nature. They have to provide everything, while
with Cairo, the application has ample room to build richer systems. It is for instance
possible to let Cairo render into a local buffer, tweak the pixels directly, then use the
tweaked buffer as source for further rendering operations.

Cairo already has backends for X, OpenGL, PostScript, and local image buffers. The
OpenGL backend has seen a lot of work recently and shows that Cairo can be ef-
ficiently accelerated on modern graphics hardware. The PostScript backend is still
very basic, it just writes a huge bitmap to the PostScript file, which is of course not
how you want to render a document. A real PostScript backend needs to be a very
sophisticated in figuring out what parts need to be send as bitmaps, and what can
be rendered using PostScript operators. This is necessary, since the Cairo (~PDF) ren-
dering model is much richer than the PostScript model. While this is a programming
challenge, it has been tackled in such software as OpenOffice and ghostscript, so it is
definitively doable. A simple way out would be to write a pdf file and let ghostscript
deal with the conversion to PostScript.
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The traditional GDK rendering API, which wraps the Xlib drawing functions will not
go away; Cairo will be an additional rendering API. Most likely the Cairo support in
GDK will not wrap the complete Cairo API, it may consist of a single function which
connects GdkDrawable and a Cairo surface and redirects drawing from the surface to
the drawable. The reason for wrapping the entire Xlib drawing api was that the Xlib
functions require explicit Display and Window parameters all the time, which makes
them cumbersome to use. Another reason was that GDK allows other backend imple-
mentations beside the Xlib one, e.g. the Windows backend. Cairo on the other hand,
already offers an API very similar to what the GDK wrappers would look like any-
way, with a single cairo_t context parameter. And Cairo already supports multiple
backends, so wrapping it again in GDK would create multiple levels of wrapping.

A big advantage of not wrapping the Cairo api further is that we don’t have to
maintain the wrapper layer as Cairo develops further. We don’t have to maintain
separate documentation. A small disadvantage of not wrapping Cairo is that the
naming conventions don’t match exactly (cairo_font_t instead of CairoFont,
cairo_font_reference() instead of cairo_font_ref()) - application programmers will
learn to live with it. The fact that Cairo doesn’t use GObject causes a bit more
work for language bindings. But we are convinced that the benefits outweigh the
disadvantages.

While Cairo allows to do rendering with an alpha channel, the COMPOSITE X exten-
sion allows windows to have an alpha channel. While the usefulness of this is often
overrated, it allows for neat ’glitz’ effects like fading in and out of menus, or proper
drop-shadows. GDK will support this by offering API to find visuals and colormaps
with an alpha channel.

Theming is a difficult issue because there is an inherent tnesion. On the one hand, we
want to have themes that can control precisely how GTK+ renders, and we want to be
able to extend GTK+ with new widget types. The considerations argue for a theming
system that is tightly integrated with the way GTK+ works. On the other hand, we
want to write themes that chain to a platform native look: the WIMP theme has done
this very effectively for Windows. And we want to be able to use the theme system
to render third-party widgets, as is done by e.g. OpenOffice or Mozilla. These con-
siderations argue for a theming system that is much more closely tied to the idea of
a "standard set" of widgets. Finally, it has to be possible for libraries and applications
to create new widgets and have them work with themes without the theme having
explicit knowledge about the new widgets.

The current theme system in GTK+ was developed with knowledge of the above is-
sues, and the attempt was to create a maximally flexible system. The way it works is
that a theme provides replacements for the standard paint functions corresponding
to different basic widget components: flat and beveled boxes, checkbutton indicators,
arrows,notebook tabs, etc. These functions are called to draw the actual widgets, and
they receive the drawable and area to draw in, but also some extra information: an
unspecified detail string, and a reference to the widget itself. The idea is that by pro-
viding basic implementations of the functions, a theme can minimally render any
widget, but it can also use the detail string or even the widget pointer to special case
and improve the rendering for particular widgets. The theme engine and generic and
theme specific options are bound to particular widgets using the gtkrc file which is
written in a custom language whose syntax vaguely resembles C.

The theme system currently used in GTK+ has been successful in the sense that peo-
ple have generally been able to get widgets to appear as they want, but the system
has a number of big shortcomings.

• The style functions take a detail parameter, which is a freeform string. The set
of used detail strings is unspecified, and style functions have to do a considerable
amount of special-casing based on the detail strings in order to render all widgets
reasonably.

• There is no concept of layout in the theme system. All layout decisions are done in
the widgets. This means that it is not possible to write a theme which rearranges
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the controls in the color selection dialog, unless the color selection dialog defines a
style property for this purpose.

• The style functions are very hard to use for rendering non-GTK+ widgets, yet this
is desirable to match the appearance of GTK+ in applications written in other toolk-
its, e.g. OpenOffice or Mozilla.

A new theme system should address these issues.

• It should be fully specified to avoid the detail string mess.

• It should provide access to layout of composite widgets.

• It should emphasize declarative ways to write themes, and the declarative parts
of a theme should use a standard syntax like XML or even CSS. The unavoidable
imperative parts should not depend on GTK+ internals, in order to make them
useable for non-GTK+ widgets. Using Cairo as the rendering API for themes would
go a long way towards achieving this.

The missing print dialog is one of the more glaring holes in the widget set. libg-
nomeprint and libgnomeprintui offer a print dialog, but the natural place for it to
live is GTK+. Having Cairo support in GDK will make this easier, since Cairo already
has PS and PDF backends. The print dialog will be implemented similarly to how the
new file chooser works, with backends for the various printing systems: CUPS and
maybe lpr for legacy Unix systems, GDI on Windows.

Introspection (also known as "Reflection", or "typelibs") means that GTK+ offers in-
formation about its interfaces in a form which can be programmatically used. GOb-
ject currently offers information about the type hierarchy and implemented inter-
faces, and about signals and properties of objects. This information is successfully
used for creating automatic language bindings, it is used by gtk-doc to automatically
generate a good amount of the GTK+ reference documentation. It could also be used
to help with code generation and code completion in IDEs, although I don’t know if
there are any such projects currently using the GObject introspection.

To make the introspection mechanism of GObject even more useful, the virtual func-
tion slots in class structures and the ordinary library functions should be made avail-
able. This should allow fully automated language bindings, and would allow IDEs to
assist in deriving new classes from existing ones, by knowing which virtual functions
can be overridden, and what their signatures are.

Many other interesting, "blue-sky" ideas for future GTK+ development can be found
on http://www.gtk.org/plan/2.6

Conclusion
GTK+ will continue to evolve in interesting ways, there is a lot to explore and try in
the area of user interface design. GTK+ would not be where it is today if it wouldn’t
have been backed by such a superb team of developers.
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