
Matthias Clasen

mclasen@redhat.com

Table of Contents
Introduction ...3
New or improved widgets...3
New cell renderers..9
Other new features ...11
What will be new in GTK+ 2.8 ?..13
Reference material for porting to GTK+ 2.6 APIs ..14

Introduction
The current stable branch of the GTK+ stack, consisting of GLib 2.6, Pango 1.8 and
GTK+ 2.6 was released last December. This may seem like a long time in the world
of 6 month release cycles, but 2.6 contains a considerable number of new APIs, rang-
ing from whole new widgets to small integration features or miscellaneous API gaps
which have been closed. Many of the new features will need some more time to be-
come used throughout the GNOME stack.

The intention of this talk is to help the adoption of the new GTK+ APIs, by making
them better known. I will also peek ahead at what GTK+ 2.8 will offer, if time permits.

New or improved widgets
The new widgets in GTK+ 2.6 are for the most part ports or reimplementations of
widgets which previously existed higher up in the GNOME stack. They have been in-
tegrated into GTK+, since there is really no reason to force applications to link against
the whole GNOME stack to use these generally useful widgets. The trend of moving
widgets down to GTK+ has started earlier, when GtkFontButton and GtkColorBut-
ton made their appearance in GTK+ 2.4, and it will likely continue in the future, since
there are some more GNOME widgets on the "wishlist" for future GTK+ releases.

In some cases, widgets have gained new functionality while being ported from
libgnomeui to GTK+. Some features which are complicated or hard to implement
in GTK+ (like editing or drag-and-drop in the icon view) have been temporarily
dropped, and some rarely used or misdesigned features (like dithering support in
the color picker button) have been dropped altogether.

GtkIconView
GtkIconView is a widget which displays labeled icons in a grid layout. It is similar to
GnomeIconList and at the same time more flexible and more restricted this widget.

It is more flexible, since it uses a model-view architecture and takes icons and labels
to display from a tree model. This may look strange at first, as the icon view does only
support flat models, not real trees. But the advantage of reusing the tree models is that
the infrastructure for sorting and filtering is already there with GtkTreeModelSort
and GtkTreeModelFilter. Also, we have the flexibility to associate not just pixbufs
and strings, but arbitrary data with items.

The icon view example in gtk-demo nicely demonstrates the power of this concept.
It realizes a very simple file system browser. In addition to the name and the icon, it
stores a boolean for each item indicating wether it is a directory or or a regular file. It
also sets a sort function on the tree model which uses the extra data to sort directories
before files.

3

A GtkIconView with a "rubberband" selection

The areas in which GtkIconView is currently more restricted than GnomeIconList
are editing and drag-and-drop. We hope to address these limitations in future GTK+
releases.

The model-view separation makes the GtkIconView API a bit more heavy to use
than the GnomeIconList. There is some extra setup to create the model and associate
it with the view

model = gtk_list_store_new (2, G_TYPE_STRING, GDK_TYPE_PIXBUF);

gtk_icon_view_set_model (view, model);
gtk_icon_view_set_text_column (view, 0);
gtk_icon_view_set_pixbuf_column (view, 1);

The single call to append an item to a GnomeIconList

gnome_icon_list_append (list, "file.png", "text");

has to be replaced by the following

pixbuf = gdk_pixbuf_new_from_file ("file.png");
gtk_list_store_append (model, &iter);
gtk_list_store_set (model, &iter,

0, pixbuf,
1, "text",
-1);

A more thorough discussion of porting from GnomeIconList to GtkIconView can be
found in the GTK+ API documentation, which contains a chapter called "Migrating
from GnomeIconList to GtkIconView".

4

GtkAboutDialog
GtkAboutDialog is a port of the GnomeAbout widget to GTK+, with some exten-
sions. The extensions include clickable hyperlinks and email addresses, a separate
license window and support for artists’ credits.

To make use of the hyperlink support, you have to call the functions
gtk_about_dialog_set_email_hook() and gtk_about_dialog_set_url_hook() to set up
suitable callbacks to open the URL that has been clicked. When you are using the
GNOME stack, you probably want to use gnome_url_show() in your callback, which
will automatically take care of opening the user’s preferred browser or email client.

A GtkAboutDialog

GtkAboutDialog offers a convenience function gtk_show_about_dialog() which
makes it very easy to setup and associate an about dialog with a toplevel window.
Repeated calls to gtk_show_about_dialog() will reuse the previously create about
dialog. The code below demonstrates how to use gtk_show_about_dialog() to
construct the dialog shown above.

void
open_link (GtkAboutDialog *dialog,

const gchar *link,
gpointer data)

{
gnome_url_show (link, NULL);

}

const gchar *authors[] =
{
"Peter Mattis",
"Spencer Kimball",
"Josh MacDonald",
"and many more...",
NULL

};

5

const gchar *documentors[] =
{
"Owen Taylor",
"Tony Gale",
"Matthias Clasen <clasen@redhat.com>",
"and many more...",
NULL

};

const gchar *license = "...";

GdkPixbuf *pixbuf = gdk_pixbuf_new_from_file (filename, NULL);

gtk_about_dialog_set_email_hook (open_link, NULL, NULL);
gtk_about_dialog_set_url_hook (open_link, NULL, NULL);
gtk_show_about_dialog (GTK_WINDOW (window),

"name", "GTK+ Code Demos",
"version", "2.6.3",
"copyright", "(C) 1997-2004 The GTK+ Team",
"license", license,
"website", "http://www.gtk.org",
"comments", "Program to demonstrate GTK+ functions.",
"authors", authors,
"documenters", documentors,
"logo", pixbuf,
NULL);

The corresponding code using GnomeAbout would be slightly different,
since you have to construct and show the dialog in two steps. Also note that
gtk_show_about_dialog() expects a list of key-value pairs as arguments where
gnome_about_new() just expects the value.

GtkWidget *about_box = gnome_about_new ("GTK+ Code Demos",
"2.6.3",
"(C) 1997-2004 The GTK+ Team",
"Program to demonstrate GTK+ functions.",
authors,
documentors,
"Translation credits",
pixbuf);

gtk_widget_show (about_box);

Again, the GTK+ API docs have a chapter called "Migrating from GnomeAbout to
GtkAboutDialog", which contains further hints.

GtkFileChooserButton
The GtkFileChooserButton complements the GtkColorButton and GtkFontButton
which appeared in GTK+ 2.4. These three widgets are primarily used in preference
dialogs. The GtkFileChooserButton is meant to replace GnomeFileEntry. Since it
implements the GtkFileChooser interface, it has only a very minimal API, most of
the GnomeFileEntry functions are replaced by GtkFileChooser functions.

6

Choosing a directory

GtkMenuToolButton
GtkMenuToolButton provides a convenient API for the dropdown menus from
toolbar buttons which are commonly seen on the "Forward" and "Back" buttons of
browsers. The code in GTK+ 2.6 has been derived from similar widgets in Galeon,
Epiphany and GEdit. Creating a menu tool button is very straighforward:

menu = gtk_menu_new ();

item = gtk_menu_tool_button_new_from_stock (GTK_STOCK_OPEN);
gtk_menu_tool_button_set_menu (GTK_MENU_TOOL_BUTTON (item), menu);
gtk_toolbar_insert (GTK_TOOLBAR (toolbar), item, -1);

GtkComboBox
The GtkComboBox widget made its first appearance in GTK+ 2.4. A somewhat un-
usual feature of this widget is that it is also follows the model-view pattern and uses
tree models. In 2.4, the models had to be flat lists. The major new feature in 2.6 is
that trees are now supported. They are displayed as nested menus or in a treeview,
depending on the GtkComboBox::appears-as-list style property, which switches be-
tween option menu style and Windows combo box style.

GtkTreeView has acquired several new features in GTK+ 2.6 specifically to make the
popup in this example work as expected: The selection follows the pointer, and the
rows expand and collapse on mouse-over.

7

Note how the menuitems with submenus are repeated as the first item in the sub-
menu. This is necessary, since GTK+ does not allow menuitems with submenus to be
activated. The following code was used to create the example shown above.

/* Create the model */
store = gtk_tree_store_new (3, GDK_TYPE_PIXBUF, G_TYPE_STRING, G_TYPE_BOOLEAN);

/* Create the combo box */
combo = gtk_combo_box_new ();

pixbuf = gtk_widget_render_icon (combo, GTK_STOCK_DIALOG_WARNING,
GTK_ICON_SIZE_BUTTON, NULL);

gtk_tree_store_append (store, &iter, NULL);
gtk_tree_store_set (store, &iter, 0, pixbuf, 1, "Danger", 2, TRUE, -1);

pixbuf = gtk_widget_render_icon (combo, GTK_STOCK_NEW,
GTK_ICON_SIZE_BUTTON, NULL);

gtk_tree_store_append (store, &iter2, &iter);
gtk_tree_store_set (store, &iter2, 0, pixbuf, 1, "New", 2, TRUE, -1);

gtk_tree_store_append (store, &iter, NULL);
gtk_tree_store_set (store, &iter, 0, pixbuf, 1, "Separator", 2, FALSE, -1);

pixbuf = gtk_widget_render_icon (combo, GTK_STOCK_STOP,
GTK_ICON_SIZE_BUTTON, NULL);

gtk_tree_store_append (store, &iter, NULL);
gtk_tree_store_set (store, &iter, 0, pixbuf, 1, "Stop", 2, TRUE, -1);

/* Set the model */
gtk_combo_box_set_model (GTK_COMBO_BOX (combo), GTK_TREE_MODEL (store));
gtk_combo_box_set_active_iter (GTK_COMBO_BOX (combo), &iter);

/* Set up cell renderers */
renderer1 = gtk_cell_renderer_pixbuf_new ();
gtk_cell_layout_pack_start (GTK_CELL_LAYOUT (combo), renderer1, FALSE);
gtk_cell_layout_set_attributes (GTK_CELL_LAYOUT (combo),

renderer1, "pixbuf", 0, NULL);

renderer2 = gtk_cell_renderer_text_new ();
gtk_cell_layout_pack_start (GTK_CELL_LAYOUT (combo), renderer2, TRUE);
gtk_cell_layout_set_attributes (GTK_CELL_LAYOUT (combo),

renderer2, "text", 1, NULL);

Another new feature of GtkComboBox (and tree views in general) are separators.
They are used by setting up a callback function which determines wether a row
should be renderered as separator or not. The callback function has access to the
model and the row that is being renderered, and can e.g. look at a boolean column or
check for a specific string, e.g. "--". In order to turn the "Separator" row in the example
above into a separator, we add the call

gtk_combo_box_set_row_separator_func (GTK_COMBO_BOX (combo),
is_separator, NULL, NULL);

and define the callback as follows:

static gboolean
is_separator (GtkTreeModel *model,

GtkTreeIter *iter,
gpointer data)

{
gboolean result;

gtk_tree_model_get (model, iter, 2, &result, -1);

8

return !result;
}

GtkComboBox items (and tree view rows in general) can be insensitive, which means
they can’t be selected, and are grayed out. This is implemented as by the GtkCellRen-
derer::sensitive property; a row is treated as insensitive for selection purposes if all
cells have the sensitive property set to FALSE. To make the "Separator" row in the
previous example insensitive, we can simply map the sensitive property to column 2
in the gtk_cell_layout_set_attributes calls:

gtk_cell_layout_set_attributes (GTK_CELL_LAYOUT (combo), renderer1,
"pixbuf", 0,
"sensitive", 2, NULL);

gtk_cell_layout_set_attributes (GTK_CELL_LAYOUT (combo), renderer2,
"text", 1,
"sensitive", 2, NULL);

New cell renderers
Cell renderers are responsible for drawing the contents of treeview cells. They are
also responsible for setting up a suitable widget for editing the contents of a cell, if it
is editable. Two new cell renderers made their debut in 2.6. GtkCellRendererProgress
displays a numeric value as a progress bar. GtkCellRendererCombo displays text,
but uses a GtkComboBox or GtkComboBoxEntry to edit the value, where GtkCell-
RendererText uses an entry.

One conceptual difficulty with using GtkCellRendererCombo is that there are two
tree models involved. The cell renderer displays a cell, by rendering a value from
the model which backs the tree view. When editing the cell, a GtkComboBox is in-
stantiated whose initial value is the one displayed in the cell. The possible values
of the GtkComboBox come from a different tree model, lets call it the "value model",
which can be set using the GtkCellRendererCombo::model property. The normal case
is probably to use the same value model for all rows, but it is possible to choose a dif-
ferent one for each row.

An example for using a combo cell renderer has recently been added to gtk-demo.
It also shows how to use the GtkCellRenderer::editing-started signal to do custom
setup of the editable widget. This signal is also a 2.6 addition.

9

GtkCellRendererCombo in action

The code to set up the GtkCellRendererCombo in this example looks as follows:

numbers_model = gtk_list_store_new (1, G_TYPE_STRING);

for (i = 0; i < 10; i++)
{
char str[2] = { ’0’ + i, ’\0’ };

gtk_list_store_append (numbers_model, &iter);
gtk_list_store_set (numbers_model, &iter, COLUMN_NUMBER_TEXT, str, -1);

}

renderer = gtk_cell_renderer_combo_new ();
g_object_set (renderer,

"model", numbers_model,
"text-column", COLUMN_NUMBER_TEXT,
"has-entry", FALSE,
"editable", TRUE,
NULL);

g_signal_connect (renderer, "editing-started", G_CALLBACK (editing_started), NULL);
g_signal_connect (renderer, "edited", G_CALLBACK (cell_edited), items_model);

gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW (treeview),
-1, "Number", renderer,
"text", 0,
NULL);

The code is using the following callback to setup the combo box before editing starts.
For demonstration purposes, we’re turning row 5 into a separator.

static gboolean
separator_row (GtkTreeModel *model,

GtkTreeIter *iter,

10

gpointer data)
{
GtkTreePath *path;
gint idx;

path = gtk_tree_model_get_path (model, iter);
idx = gtk_tree_path_get_indices (path)[0];
gtk_tree_path_free (path);

return idx == 5;
}

static void
editing_started (GtkCellRenderer *cell,

GtkCellEditable *editable,
const gchar *path,
gpointer data)

{
gtk_combo_box_set_row_separator_func (GTK_COMBO_BOX (editable),

separator_row, NULL, NULL);
}

Other new features
In the second part of my talk, I want to mention a number of smaller new features in
GTK+, which are easily overlooked.

Clipboard improvements
GTK+ can cooperate with a clipboard manager to persistently store the clipboard
contents beyond the lifetime of the application. The API for this consists of the two
functions gtk_clipboard_set_can_store() and gtk_clipboard_store().

The protocol used for transferring the data to the clipboard manager works in a lazy
way, ie. no data is transferred unless the application is about to exit while it owns the
clipboard. A prototype clipboard manager implementation has been made by Anders
Carlsson.

Another extension of the clipboard API in 2.6 is better support for storing images and
uris in the clipboard. There is a whole family of new functions for this:

gtk_clipboard_set_image()
gtk_clipboard_request_image()

gtk_selection_data_set_pixbuf()
gtk_selection_data_get_pixbuf()

gtk_drag_source_add_image_targets()
gtk_drag_dest_add_image_targets()

These functions support all image formats supported by gdk-pixbuf. Similar func-
tions exist to transfer text in any supported format and to transfer URIs. URIs are
transferred using the text/uri-list MIME type which is specified in RFC 2483. GLib
2.6 offers the function g_uri_list_extract_uris() to extract the uris from such a list.

11

Ellipsization and rotated text
Pango supports ellipsization (i.e. typographically correct insertion of ellipsis charac-
ters to shorten long texts) and rotation of text since 1.8. GTK+ supports this in the rel-
evant places now. Labels can be rotated using the GtkLabel::angle property. Ellipsiza-
tion can be turned on for labels and progress bars using the gtk_label_set_ellipsize()
and gtk_progress_bar_set_ellipsize() functions. Status bars are ellipsized by default.
GtkCellRendererText has an ellipsize property which can be set to turn on ellipsiza-
tion in treeview cells.

One complication in connection with ellipsization is to ensure that labels
keep a reasonable size, and don’t collapse to their minimum size, which
is the width of three dots, if the label is ellipsized. Another new function,
gtk_label_set_max_width_chars(), helps in this case. It allows to specify the desired
maximum width of an ellipsized label. The label will be given its natural width,
unless that would exceed the maximum with, in which case the label is ellipsized to
the the maximum width. Another function that should be mentioned in this context
is gtk_file_chooser_button_set_width_chars(), which allows to specify how many
characters a GtkFileChooserButton should display before ellipsization kicks in.

Named icons
GTK+ supports named icons in a lot more places in 2.6. These are icons which are
specified by name, and change their appearance according to the icon theme of the
desktop. This is an important aspect to ensure that applications integrate visually
in the desktop. To create a GtkImage widget whose image changes with the
theme use gtk_image_set_from_icon_name(). To set a themed window icon, use
gtk_window_set_icon_name().

Better Desktop integration
An important aspect of being a good desktop application is to respect global pref-
erences set by the user. The GTK+ mechanism for this is called "settings". These
are managed by the gnome-settings-daemon, and applications are notified about
changes in the settings, in order to allow settings to change on-the-fly. This is how
e.g. theme switching works. GTK+ 2.6 introduces a number of new settings, which
allow desktop-wide control of more UI details:

Images in menus

The gtk-menu-images setting allows the user to suppress images in menu items. Ap-
plications don’t have to do anything special; GtkImageMenuItem automatically re-
acts to this setting.

Images in buttons

The gtk-button-images setting allows the user to suppress images in buttons. This
works automatically for buttons constructed with gtk_button_new_from_stock(). To
make it work for manually constructed buttons, images should be added with
gtk_button_set_image(). Doing that is not only easier than fiddling with boxes and
alignment, but also guarantees that your buttons appear in the same way as stock
buttons.

12

Button order in dialogs

The gtk-alternative-button-order setting allows to select an "alternative
button order", as opposed to the normal button order specified by the
GNOME HIG. In order to respect this setting, applications should call
gtk_dialog_set_alternative_button_order() to set up alternative button orders for
their custom dialogs. GTK+ automatically does this for the included dialogs like the
color selection dialog and the font selection dialog.

This setting is not not controlled by the gnome-settings-daemon, since it is not meant
as configurable parameter inside a desktop environment. It is set in the rc file of the
ms-windows theme, to make GTK+ applications adapt to the native button order on
Windows.

Here is an example which shows how to set up a dialog with the regular button order
"Button", "Cancel", "OK", and alternative button order "Button", "OK, "Cancel":

dialog = gtk_dialog_new_with_buttons ("Dialog", NULL, 0,
"Button", GTK_RESPONSE_APPLY,
GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
GTK_STOCK_OK, GTK_RESPONSE_OK,
NULL);

gtk_dialog_set_alternative_button_order (GTK_DIALOG (dialog),
GTK_RESPONSE_APPLY,
GTK_RESPONSE_OK,
GTK_RESPONSE_CANCEL,
-1);

What will be new in GTK+ 2.8 ?

Cairo rendering

This is the topic of Owens talk, so I won’t go into detail here. In short,
it will be possible to obtain a Cairo context from a GDK drawable with
gdk_drawable_create_cairo_context(), and then use the Cairo API to draw on the
drawable. Apart from a modern drawing API, this gives us nice antialiasing:

13

RGBA visuals

Visuals with an alpha channel will allow GTK+ applications to create translucent
windows.

Icon view improvements

The GtkIconView will reuse more of the tree view infrastructure by using cell ren-
derers to draw the items. This will remove the restriction to text+icon, and will also
make it possible to edit icon view cells.

This screenshot shows a GtkCellRendererProgress used to render a numeric column
in the underlying model. One of the text cells is being edited. You can also see a
vertical menubar with rotated labels.

Reference material for porting to GTK+ 2.6 APIs

The GTK+ migration checklist.

http://developer.gnome.org/doc/API/2.0/gtk/gtk-migrating-checklist.html

Migrating from GnomeIconList to GtkIconView.

http://developer.gnome.org/doc/API/2.0/gtk/gtk-migrating-GtkIconView.html

Migrating from GnomeAbout to GtkAboutDialog.

http://developer.gnome.org/doc/API/2.0/gtk/gtk-migrating-GtkAboutDialog.html

Migrating from GnomeColorPicker to GtkColorButton.

http://developer.gnome.org/doc/API/2.0/gtk/gtk-migrating-GtkColorButton.html

Lists of new symbols in GTK+ 2.2, 2.4, and 2.6.

http://developer.gnome.org/doc/API/2.0/gtk/index.html

14

	Table of Contents
	Introduction
	New or improved widgets
	GtkIconView
	GtkAboutDialog
	GtkFileChooserButton
	GtkMenuToolButton
	GtkComboBox

	New cell renderers
	Other new features
	Clipboard improvements
	Ellipsization and rotated text
	Named icons
	Better Desktop integration

	What will be new in GTK+ 2.8 ?
	Reference material for porting to GTK+ 2.6 APIs

