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6.1 Karhunen-Loéve 8× 8 transform demonstration. . . . . . . . . . . . . 59

6.2 DCT basis vectors for 8× 8 transform. . . . . . . . . . . . . . . . . . 61

x



6.3 DWHT basis vectors for 8× 8 transform. . . . . . . . . . . . . . . . . 62

6.4 Progressive 8× 8 encoding with zero-padded 2D IDCT prediction. . . 63

6.5 Image interpolation from decimated image 8× 8 to 256× 256 pixels. . 64

6.6 Pixel predictions from decimated images with increasing iteration. . . 65

7.1 Graphical illustration of arithmetic coding. . . . . . . . . . . . . . . . 78

7.2 Entropy dependence on context size. . . . . . . . . . . . . . . . . . . 80

7.3 Scheme of the proposed compression algorithm. . . . . . . . . . . . . 80

7.4 Sample 1024× 1024 grayscale image used for compression. . . . . . . 82

7.5 Application to the Visible Human Project. . . . . . . . . . . . . . . . 88

xi



Contribution of the dissertation

The main contribution of the dissertation should be a complete fulfillment of the

following tasks:

1. Development of new volume rendering software able to interactively analyze

one-channel and multi-channel general large scale volume datasets.

2. Development of new lossless compression algorithm and software for compres-

sion of digital images and volume data with compression ratios comparable or

better than recent image formats used for lossless compression.

3. Development of new lossy compression algorithm and software for compression

of digital images and volume data with compression ratios comparable or better

than recent lossy image formats with comparable or higher signal to noise ratio.

4. Application of volume rendering software to analysis of the Visible Human

ProjectTM true color volume dataset.

1



Introduction

The purpose of the dissertation is to introduce a new approach of general volume

data analysis. Many recent measurements in engineering practise lead to a three

dimensional volume representation of results which are quite hard to be analyzed in

an image representation since its true nature is three dimensional. As a particular

example can be noted data acquired by a confocal microscope or nuclear magnetic

resonance scanners which are of great importance in medicine and biology. Because

of the fact the volume data are stored in a general three dimensional matrix it can

be used for analysis of any volume representation of a physical phenomenon such as

results of numerical solution of differential equations etc. Therefore it is not limited

only to measured datasets.

The visualization method is designed especially to simulate a human perception of

observing a volume object, particularly linear perspective projection, visibility based

on raycasting and color combining techniques are used. Thus one can deduce fea-

tures of a volume object naturally without a proper knowledge of these methods.

An important property of this visualization method is that a volume object can be

observed interactively so a factual emphasis in the dissertation is aimed to render

a visualization in the fastest possible time, but without a hardware acceleration, be-

cause recent accelerators do not provide sufficient support for high quality accelerated

volume rendering.

The next part of the dissertation is dedicated to principles and application of

digital filters to image and volumetric data, where also methods of adaptive filtering

such as adaptive kernel convolution are presented with particular examples of their

2
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use in practise. Volume analysis unfortunately brings lots of problems to solve. The

most apparent problem is a vast amount of storage space required to contain all the

information contained in a volume object in contrast with a less expensive 2D image

representation. It is essential to overcome this problem since rather small volume

data can reach beyond a capacity of todays computers. To reduce a total amount

of information there are proposed two types of compression algorithms. The first,

lossless algorithm is based on Burrows-Wheeler block sorting and adaptive arithmetic

encoding with finite context prediction. The second is aimed to lossy compression,

which is based on progressive DCT encoding.



Chapter 1

Digital Color Representation

“Colour.

Fades to grey.

I dream so exciting.

But I, I feel so bold.”

— Seal - Colour

1.1 Introduction

T
he most popular part of image processing is processing of color images.

There exist various ways to store and interpret color information present in

such images. A color is often represented by three coordinates which can

be imagined as a spatial vector. Thus a color can be represented by a vector in so

called color space. Further will be discussed properties of the most frequent color

spaces in order to learn how a color information can be stored and which color space

is suitable for a patricular processing. More in-depth information about color spaces

can be found in [12].

4
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1.2 CIE Chromacity Diagram

The name CIE comes from french Comission Internationale de l’Éclairage and

means International Commission on Illumination. It is the international authority on

light, illumination, color and color spaces. The standard reference for color definition

is CIE chromacity diagram (fig.1.1).

Figure 1.1: CIE color representation.

Figure 1.2: Normalized spectral colors derived from the CIE diagram.

This diagram was developed in 1931 and in full plot it is three dimensional with

tristimulus X, Y, Z coordinates. The coordinates are linear measures of light power.

The Y coordinate is called “luminance” which can be regarded as a measure of per-

cepted brightness. For better operating it was transformed to 2D x, y diagram where
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y axis shows color intensity and x axis chrominance of CIE-1931 standard observer

as illustrated by the transformation equations:

x =
X

X + Y + Z
, y =

Y

X + Y + Z
. (1.1)

The x, y coordinates are known as chromacity coordinates. The CIE diagram is

based on visual response of this observer and is determined by physiological measure-

ments of human color vision. Upper rounded boundary of the diagram is composed

of pure spectral colors and their purety (saturation) decreases down to a white point

in the center. Lower straight purple part is not a spectral color and is used as arbi-

trarily selected wavelength cut-off. Most frequently the color properties are described

by red, green and blue x, y coordinates, which are called primary illuminants and

so called white point. The CIE diagram in chromacity coordinates is presented in

fig.1.1 and the recommended [2] CIE D65 ‘daylight’ whitepoint is:

xw = 0.3127, yw = 0.3290, (1.2)

and the respective primary illuminants are:(
xr xg xb

yr yg yb

)
=

(
0.64 0.30 0.15

0.33 0.60 0.06

)
. (1.3)

The D65 primary illuminants are intended to represent ‘daylight’ temperatures at

various correlated color temperatures, which are colors that in a well defined sence

corresponds to black body color at certain temperature. The correlated color tem-

perature for D65 corresponds to roughly 6500K1.

1.3 RGB color space

The RGB color space is an additive color space which represents a color by a combi-

nation of three basic colors, which are red (λ ≈ 650nm), green (λ ≈ 540nm) and blue

1About 6504K since the later more proper evaluation of hc/k fundamental constats ratio in the
Planck formula.
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(λ ≈ 450nm). This color space is called additive because if two different monochro-

matic light sources are observed, with different wavelenghts, the result we see is an

addition of both colors which is percepted as a new color. The same property has

the RGB color space2. The colors of red, green and blue were chosen because human

color perception is created from three types of detectors on retina where each of them

is roughly most sensitive to one of these colors. In fig.1.3 one can see that two close

Figure 1.3: Additive R,G,B color mixing.

light sources shining red and green with the same intensity seems to be yellow. Stan-

dard representation of RGB color values is called true color, where each channel is

encoded as 8-bit number, so it is 24 bits per color sample in total, i.e. 16 777 216 of

possible colors in total.

The RGB color space is most frequently used for computer image processing be-

cause it is composed from pure spectral colors and is the most similar to mechanism

of human color perception. For this reason RGB is used as the basic color space for

further calculations and a conversion of any other mentioned color space3 back to

RGB is described here because of this fact.

1.4 CMY color space

The CMY color space is a subtractive color space where a color is represented by

cyan, magenta and yellow components. In contrast to RGB color space the CMY is

2When no overflow in addition occurs.
3Except the artistic ones.
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not based on a light emission but on light absorbtion. It means that the final color is

composed from CMY colors which filters out only red, green or blue color component

from white background. This is shown in the fig.1.4. Therefore CMY colors have to

Figure 1.4: Subtractive C,M,Y color mixing.

be colors composed from two of basic RGB colors. This is shown in table 1.1, what

could be interpreted in the way that if cyan and magenta are filtered out from white

background we get blue, etc.

red green blue
cyan 0 1 1
magenta 1 0 1
yellow 1 1 0

Table 1.1: CMY colors expressed in RGB color space and vice versa.

The CMY color model is used in most cases in notebook displays and printing.

In case of printing the CMYK color space modification where K=black is used. It

is because when the CMY printer pigments are equally mixed, the black color is not

the result as we could expect. For that reason it is one extra black cartridge present

in recent color printers.
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1.5 YUV color space

The YUV4 color space separates brightness and color information of the light in

the way that Y contains information about intensity of light (luminance) and U,

V components represent the color (chrominance) information. In fact the YUV is

a linear transformation of RGB color space. The Y component is calculated from

weighted sum of R,G,B values of input signal which is based on eye sensitivity to

these colors. Chrominance components are calculated relatively to Y. More precisely

the U channel is obtained when B component is subtracted from Y. Similarly the V

component we get when we subtract Y from R. This property is easy to see from (1.5)

So the RGB → YUV conversion is:
Y

U

V

 =


0.299 0.587 0.114

−0.147 −0.289 0.437

0.615 −0.515 −0.100



R

G

B

 (1.4)

and the backward YUV → RGB is:
R

G

B

 =


1 0 1.140

1 −0.394 −0.581

1 2.028 0



Y

U

V

 . (1.5)

The YUV color space is a part of PAL standard and is used for television broadcasting.

The reason why YUV color space is used is because it can be simply viewed by either

color or monochromatic televisions where U and V chrominance channels are simply

ignored. In digital image processing the YUV color space is used in JPEG still image

compression and MPEG digital video compression codecs.

1.6 YIQ color space

The YIQ color space is very similar to the YUV. It is also a linear transformation

of RGB color space and is also derived from human visual system to reduce signal

4Also known as Y’CbCr or YPbPr.
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bandwidth. The RGB → YIQ transformation is:
Y

I

Q

 =


0.299 0.587 0.114

0.596 −0.274 −0.322

0.212 −0.523 −0.311



R

G

B

 (1.6)

and backward YIQ → RGB is
R

G

B

 =


1 0.956 0.621

1 −0.272 −0.647

1 −1.105 1.702



Y

I

Q

 . (1.7)

YIQ is the primary color space for the NTSC television broadcasting standard.

1.7 HSV and HLS color space

The HSV is an artistic color space created by Alvy Ray Smith in 1978. It is nonlinear

transformation of RGB space and describes color by hue (color type), saturation

(purety) and value (intensity). So it is easier to specify a particular color because the

final color does not depend on a ballance between channels5 but on color properties

percepted roughly separately by human.

• Hue component has units of degrees and represents periodic spectral color wheel

where for H = 0◦ is red color hue.

• Saturation component specifies purety of color specified by hue. Saturation of

a color is defined in terms of how much white color is present in it. A color with

maximal saturation is pure thus no white is present in it and any color with

zero saturation is a pure level of white6.

• Value component specifies brightness of the color.

5Like in above mentioned color spaces.
6Hence for zero saturation no hue is defined (or defined to 0).
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Figure 1.5: The HSV color space illustration.

A particular calculation of the H,S, V color components from a R,G,B color triplet

is illustrated as follows, where ∆ is used as a helper variable:

∆ = max(R,G,B)−min(R,G,B) (1.8)

H =


(
G−B

∆

)
60 if max(R,G,B) = R;(

2 + B−R
∆

)
60 if max(R,G,B) = G;(

4 + R−G
∆

)
60 if max(R,G,B) = B;

(1.9)

S =

{
∆

max(R,G,B)
if max(R,G,B) > 0;

0 if max(R,G,B) = 0;
(1.10)

V = max(R,G,B). (1.11)

The hue color wheel is composed from six segments where hues are linearly interpo-

lated between two different components of RGB space what roughly approximates

spectral color sequence with increasing hue.

There exist yet another very similar color space called HLS. In this color space

H component is identical as in HSV, L stands for ‘lightness’7. The saturation and

lightness are defined differently from HSV as:

S = ∆, L =
[
max(R,G,B) + min(R,G,B)

]
/2. (1.12)

7Also luminance, luminosity.
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1.8 Black Body and Sun Color

The effective sun temperature is about 5780K. It is hard to determine its color since

the sun is not a perfect black body and the final percepted color is also affected by

atmospheric effects. However not a big mistake will be made by an assumption that

irradiation of the sun is a perfect black body. We can calculate a color of it rather

easily then using the Planck irradiation law:

P (λ, T ) =
4π2~c2(

e
hc
kλT − 1

)
λ5
, (1.13)

what tells what is the probability of emittance of photons at a particular wavelength

λ for a black body with known temperature T . As a color percepted by human for

a particular wavelength of light is known from the CIE diagram (fig. 1.2), it is possible

to calculate black body color for a particular temperature as:

~c(T ) =
1

PT

∫ λ2

λ1

P (λ, T )~s(λ)dλ, (1.14)

where ~s(λ) is R,G,B color vector and ~c(T ) is the final color of black body at temper-

ature T ,

PT =

∫ λ2

λ1

P (λ, T )dλ (1.15)

and the range of visible color wavelengths is ∆λ = 〈λ1, λ2〉 = 〈450, 800〉 nm. The

result for this calculation can be seen at fig.1.6, where the color assigned to the sun

effective temperature is roughly white and turns to red for lower and to cyan for

higher temperatures.

Figure 1.6: Approximate black body color at various temperatures.



Chapter 2

Digital filters in image processing

2.1 What a digital filter is?

F
irst it is required to properly define a concept of a filter which is essential to

understand methods described further. It is important to point out at the

very beginning of this chapter that we are going to be involved exclusively in

analysis of digital signals. Thus it is assumed that an input signal to be processed

is sampled at a given sampling rate and quantized in a way that every sample has

a finite bit depth which is the same for all the samples within the signal. Later,

if we talk about a signal we mean a digital signal when not otherwise stated. By

digital filtering1 is meant processing samples of an input signal in the way that

some arithmetics is performed to its samples to yield an output signal. Filtering

methods are described in the following chapters.

2.2 Basic sample arithmetics

Processing of a signal means to perform numerical operations to its samples to obtain

a processed signal. These operations differ from the arithmetics of real numbers

what are used to employ in mathematics. It is caused by the fact that each signal,

1Further abbreviated only to “filtering”.

13
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therefore each its sample, must contain a finite amount of information what puts

several limitations on the arithmetics. The least piece of information is called one bit

what corresponds to a single digit number of base 2 and is called a binary number.

Let us denote the two states of the number by symbols 0 and 1. Now let us define

binary operations or and xor between two binary numbers A, B by the following

tables.

A 1 0 1 0
B 1 1 0 0

A or B 1 1 1 0

A 1 0 1 0
B 1 1 0 0

A xor B 0 1 1 0

Table 2.1: Logical disjunction (or) and Exclusive logical disjunction (xor).

Note that the operations xor and or are defined completely by these two tables since

they are defined for any possible permutation of binary numbers A, B. Let us derive

another binary operation and from the previous two:

A and B = (A or B) xor (A xor B), (2.1)

and unary not which calculates a binary complement of A as:

not A = A xor 1. (2.2)

We can also calculate all the possible results of the operations as shown above.

A 1 0 1 0
B 1 1 0 0

A and B 1 0 0 0

A 1 0
not A 0 1

Table 2.2: Logical conjunction (and) and Logical negation (not).

These are the basic operations in processing samples of a one-bit per sample signal.

Naturally in most cases we are not interested in processing of a signal with such small

samples so we need to modify these operations to let us process signals with higher

bit depth.
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The basic difference is that it is needed to consider a b–tuples of bits as a multi-

digit binary number representing one sample. Thus each sample can represent 2b

possible states of a quantized phenomenon. The operation of addition is demonstrated

here in order to investigate its different properties from an usual integer mathematics.

It is possible to derive operation of addition from operation xor as:

N(n) = N1(n) +N2(n) =
[
N1(n) xor N2(n)

]
xor C(n). (2.3)

To make the calculation clear a notation is followed that X(n) specifies n–th bit of

a multi-digit binary number X where X(0) denotes the least significant bit. Number

C(n) in the previous equation has a special meaning. It is called carry flag and

holds a temporary result of a previously performed operation. The value of C(n+ 1)

is set to 1 either if N1(n) = 1 and N2(n) = 1 or N1(n) xor N2(n) = 1 and C(n) = 1,

therefore

C(n+ 1) = N1(n) and N2(n) or N1(n) xor N2(n) and C(n). (2.4)

Let us consider an usual case of 4-bit sample addition2 11 + 2 = 13, demonstrated in

table 5, where is set C(0) = 0 because no addition has been performed before.

n 3 2 1 0 decimal
N1 1 0 1 1 11
N2 0 0 1 0 2

N = N1 xor N2 1 0 0 1
C 0 1 0 0

N xor C 1 1 0 1 13

n 3 2 1 0 decimal
N1 1 1 0 1 13
N2 0 1 0 0 4

N = N1 xor N2 1 0 0 1
C 1 0 0 0

N xor C 0 0 0 1 1

Table 2.3: Addition without overflow (left) and with overflow (right).

One can see the correct result. A different case of addition is presented in table 2.3

(right). The addition is 13 + 4 = 17 but a result of 1 is obtained. This is caused

by overflow which occurs when a result of an operation has too many bits to fit

2Realized by ADD or ADC instructions on x86 processors for 8,16,32 bit additions.
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a number representing result. The result of overflown operation is not completely

lost. Actually we see only lower significant bits of the result, i.e. 17 and (24−1) = 1.

The highest significant bit is in carry flag C(4), which is used to detect overflow in

assembly language. For instance, in table 2.3 (left) C(4) = 0, but in table 2.3 (right)

C(4) = 1, what indicates overflow, so the correct result is 24 + 1 = 17.

Unfortunately there is limited possibility to check the carry flag in higher level

languages, so we have to overcome this problem either with usage of sufficiently bit-

wide numbers whose limits never be exceeded during calculation or, a worse way, with

using of saturated operations such as addition with saturation3 where the result is

set to maximal possible value a number can contain4 in case of overflow.

But not only addition introduces overflow issues. Much worse overflows can be

caused by multiplication. For example, in the worst case of adding two n - bit numbers

we need n + 1 bits to store the result. In the worst case of multiplication 2n bits is

needed! When subtracting we have to face underflow when a result reaches under

zero, etc.

Of course when we do not want to bother with overflows, one can convert integer

samples into floating point numbers, do a calculation, and convert them back to their

integer representation. This way of processing is followed in the next chapters to

remain the text comprehensive.

2.3 Classification of Filters

Digital filters are often [14] divided in two cathegories dependent on the fact whether

the filter can or cannot be considered as a linear system. A system is called linear

if it has properties of homogenity and additivity. If one of these assumptions are

not true, the system is nonlinear. To demonstrate these and other filter properties

let us have a filter F to process an input signal a(t) to output signal b(t), then:

3Realized by a PADDSx instructions on x86 processors with MMX or SSE2 vector extensions.
4What leads to information loss.
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• Filter F is called homogenous if amplitude change in a causes the same am-

plitude change in b:

F
[
a(t)

]
= b(t) =⇒ F

[
ka(t)

]
= kb(t) ∀t, (2.5)

where k is a constant.

• Filter F is called additive if processing of addition of two input signals a1 and

a2 result in addition of two output signals b1 and b2:

F
[
a1(t)

]
= b1(t), F

[
a2(t)

]
= b2(t) =⇒ F

[
a1(t) + a2(t)

]
= b1(t) + b2(t) ∀t.

(2.6)

• Filter F is called shift invariant if shift in a causes identical shift in b:

F
[
a(t)

]
= b(t) =⇒ F

[
a(t+ dt)

]
= b(t+ dt) ∀t. (2.7)

The last property of shift invariance is not required to consider a system linear, but

most of linear and even nonlinear filters have this property.

2.4 Discrete Convolution Filters

A nice example of linear filter is a convolution filter. A discrete convolution filter can

be defined as:

b(t) = Fh(k)

[
a(t)

]
= a(t) ∗ h(k) =

K/2−1∑
k=−K/2

a(t− k)h(k) ∀t ∈ {0, 1, ..., N − 1}, (2.8)

where h(k) is convolution kernel of K samples and a(t) is a signal to be convolved.

The h(k) is also called impulse response function or point spread function

in image processing. In this text is considered only the finite impulse response

(FIR) or truncated infinite impulse response (TIIR) function h(k) exclusively

so that K is set to some sufficiently large finite value. The name of h(k) is a finite

impulse response because if an impulse is passed, i.e. a(t = t0) = 1, zero otherwise,
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through the convolution filter, function h(k) shifted of t0 is obtained as the output.

The sum of all samples within the kernel h(k) must be a non-zero constant in case of

low-pass filter what is fulfilled if it is normalized, so the condition 2.9 must hold.

K−1∑
k=0

h(k) = 1. (2.9)

An analogous condition 2.10 must hold for a high-pass filter:

K−1∑
k=0

g(k) = 0. (2.10)

Since a digital signal is processed, it is also possible to imagine discrete convolution

as matrix-vector product. For instance, let us define normalized K = 5 convolution

kernel:

h(k) = (0.1, 0.2, 0.4, 0.2, 0.1) (2.11)

and a N = 5 sample input signal:

a(t) = (0.1, 0.7, 0.2, 0.3, 0.8)T . (2.12)

If we look at (2.8) the argument of a can reach below zero and above the total

samples N in the signal. We can not neglect this boundary problem because signal

of a finite lenght is processed. By a style how the boundary problem is solved can be

distinguished various types of discrete convolution.

2.4.1 Cyclic Convolution

The first possibility how to solve the situation close to the beginning and end of the

signal is the cyclic convolution which can be expressed as:

b(t) =



0.4 0.2 0.1 0.1 0.2

0.2 0.4 0.2 0.1 0.1

0.1 0.2 0.4 0.2 0.1

0.1 0.1 0.2 0.4 0.2

0.2 0.1 0.1 0.2 0.4





0.1

0.7

0.2

0.3

0.8


=



0.39

0.45

0.37

0.40

0.49


, (2.13)
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where indices reaching out of range from a(t) are mapped back to a valid range by

modulo N :

b(t) =

K/2−1∑
k=−K/2

a
[
(t− k) mod N

]
h(k) ∀t ∈ {0, 1, .., N − 1}. (2.14)

This type of discrete convolution is suitable for processing of periodic signals and

thanks to the convolution theorem5 can be also calculated by FFT algorithms. Un-

fortunately it is rather rare case we need to process periodic images so a different

kind of convolution is likely to be used in common practise.

2.4.2 Acyclic Convolution with Kernel Renormalization

This type of convolution solves the boundary problem in the way that any part of

convolution kernel h(k) which is not in valid range of a(t) during calculation is set

to zero. This solution comes with a slight disadvantage because the truncated kernel

must be renormalized during convolution:

b(t) =



0.571 0.286 0.143 0 0

0.222 0.444 0.222 0.111 0

0.1 0.2 0.4 0.2 0.1

0 0.111 0.222 0.444 0.222

0 0 0.143 0.286 0.571





0.1

0.7

0.2

0.3

0.8


=



0.286

0.411

0.370

0.433

0.571


, (2.15)

but because of this fact it does not require the input signal to be periodic. This type

of convolution is very important in image processing as no image in general can be

considered periodic and does not consume considerable amount of memory.

2.4.3 Acyclic Convolution with Sample Extensions

The second approach to acyclic convolution without need of kernel renormalization

are sample extensions. The idea is to extend boundaries of the convolved signal a(t)

5Described in section 3.2.1.
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either on left and right hand side by K−1 copies of the leftmost and rightmost sample

so that the convolution kernel h(k) will fit to the extended signal without a need to

be renormalized. This approach is not very useful as the extended signal is mostly

a poor estimation of how the signal would actually behave beyond the boundaries.

This leads to artefactual effect such as increasing or decreasing of intensity in the

convolved signal near the signal boundaries because the final convolution is too much

affected by the guessed extended samples close to ends of a(t).

2.4.4 Acyclic Convolution with Symmetric Signal Extensions

More advanced extensions of the signal can be made if the original signal is extended

symmetrically on both sides. There are two possible ways how to implement the

symmetric extension. The first one duplicates the first or the last sample and mirrors

the rest of the signal, the second approach uses no boundary sample duplication.

Both these approaches are illustrated in fig.2.1. In some cases discussed further it is

useful to combine both ways. This way of signal extension is better that in the cyclic

a) With boundary sample duplication. b) Without boundary sample duplication.
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Figure 2.1: Examples of symmetric signal extensions.

convolution (sec. 2.4.1), because there exist a large disconuity between the end and

the beginning of a real-life signal if we use the cyclic convolution.
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2.4.5 Adaptive Kernel Convolution

In section 2.4.2 is demonstrated that for some signals it is appropriate to change

a shape of kernel during convolution. If the idea is improved a little bit, we can

say that we need not only change h(k) at the end and beginning of a(t) but also let

h(k) be somehow dependent on contents of a(t) itself. We call it adaptive kernel

convolution when this approach is used.

One application of this type of convolution is demonstrated here which is very

suitable for error elimination from images. The divide and conquer strategy is followed

here to fulfill this task, so the method itself consists of not one but a few simple steps.

The calculation consists of three steps, where adaptive kernel convolution is used in

the end:

1. Low-pass filtering of the original image I1(x, y) to obtain processed image I2(x, y).

2. Detection of defect pixels based on difference checking between I1 and I2.

3. Replacing of defect pixels and their interpolation using acyclic adaptive kernel

convolution.

For a given image I1(x, y) 2D discrete acyclic convolution with symmetric TIIR gaus-

sian kernel of K samples is calculated in each dimension to obtain I2:

I2(x, y) = Fh(kx,ky)

[
I1(x, y)

]
= I1(x, y) ∗ h1(kx, ky) = I1(x, y) ∗

[
e
−
k2x+k2y

σ2
1

]
K

(2.16)

where K is large enough to represent the point spread function h1(kx, ky). The next

step is to mark defective pixels. An information about defective pixels is held in error

matrix E(x, y), which is calculated by using the following bad pixel criterion:

E(x, y) =

{
0 if |I1(x, y)− I2(x, y)| ≤ It;

1 otherwise.
(2.17)

where It is appropriatelly selected threshold. When E(x, y) is calculated, we perform

adaptive kernel convolution (AKC) of I1(x, y) for every E(x, y) = 1 in order to inter-

polate bad pixel in I1(x, y). Even if it is a 2D problem (and might be 3D problem
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for volume data) it can be reduced to one dimensional AKC, what can be done by

creating a vector function ~p(n) which contains coordinates of neighbouring pixels in

not decreasing distance order with increasing n. It is shown in the fig.2.4. The filtered

151 129 101 89 81 69 82 90 102 130 152
131 97 70 61 49 45 50 62 71 98 132
103 72 57 37 29 25 30 38 58 73 104
91 63 39 21 13 9 14 22 40 64 92
83 51 31 15 5 1 6 16 32 52 84
74 46 26 10 2 0 3 11 27 47 75
85 53 33 17 7 4 8 18 34 54 86
93 65 41 23 19 12 20 24 42 66 94
105 76 59 43 35 28 36 44 60 77 106
133 99 78 67 55 48 56 68 79 100 134
157 135 107 95 87 80 88 96 108 136 158

Table 2.4: Pixel ordering n in non-decreasing distance from the center (Euclid metric).

image is then calculated by AKC as:

I1(x, y) =
1

||h2||

N−1∑
n=1

I1

[
(x, y)− ~p(n)

]
h2(n, x, y) ∀E(x, y) = 1, (2.18)

where

h2(n, x, y) =

 e
− |~p(n)|2

σ2
2 if E

[
(x, y) + ~p(n)

]
= 0;

0 otherwise.
(2.19)

is adaptive kernel constructed from TIIR gaussian kernel which expresses decreasing

weight of convolved pixel with increasing distance |~p(n)|. The norm ||h2|| is calculated

during AKC as:

||h2|| =
N−1∑
n=1

h2(n, x, y). (2.20)

Note that the norm is also dependent on position x, y by equation 2.19.
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The original MOLA scanned image with errors.

Filtered by adaptive kernel convolution.

Figure 2.2: Usage of the adaptive kernel convolution.



Chapter 3

Fourier Transform

“I never understood the frequency, uh-huh.

‘What’s the frequency Kenneth?’ is your Benzedrine, uh-huh.”

— R.E.M. - What’s the frequency Kenneth?

3.1 Fourier Transform Algorithms

F
ourier transform techniques are frequently used in many physical and image

processing operations in frequecy domain analysis and is very helpful part of

signal processing. There exist several methods how to calculate the Fourier

transform of a discrete signal. The most simple one is the discretized variant of

the Fourier transform called discrete Fourier transform (DFT). One dimensional

DFT is defined as

F (k) =
1

N

N−1∑
n=0

f(n)e−i2πkn/N , (3.1)

and backward (inverse) DFT as

f(n) =
1

N

N−1∑
k=0

F (k)ei2πkn/N , (3.2)

where f(n) is the signal, F (k) its spectrum and N the total number of samples.

The calculation of DFT is unfortunately rather expensive. In case of forward DFT

24
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(eq.3.1) it is needed to calculate N complex multiplications for one spectral coefficient

k. As the total number of k’s is N , N2 complex multiplications are needed to calculate

forward DFT1. In computer jargon can be said that an algorithmic complexity of DFT

is O(N2). Fortunately there exist a couple of algorithms intended to make a DFT

calculation more effective. These algorithms are known as fast Fourier transform

(FFT) algorithms and have algorithmic complexity of O(N logN). To demonstrate

this fact let us consider N = 4096 point input signal. To calculate FFT is few hundred

times2 faster than DFT! This is the reason why in practise FFT algorithms are used

and why we are going to be involved in principles and implementations of basic FFT

algorithms in detail. Further information can be found in excellent article [5].

3.1.1 Radix 2 Decimation in Time FFT Algorithm

Basic idea behind the Decimation in Time (DIT) FFT can be described by Danielson-

Lanczos Lemma which shows that a DFT of length N can be calculated as a sum

of two DFT’s of length N/2 where each N/2 DFT is composed either from even or

odd samples from the original signal. If an unnormalized DFT is considered, the

Danielson-Lanczos Lemma can be written as

F (k) =
N−1∑
n=0

f(n)e−i2πkn/N

=

N/2−1∑
n=0

f(2n)e−i2πk2n/N +

N/2−1∑
n=0

f(2n+ 1)e−i2πk(2n+1)/N

=

N/2−1∑
n=0

f(2n)e−i2πkn/(N/2) + e−i2πk/N
N/2−1∑
n=0

f(2n+ 1)e−i2πkn/(N/2).

(3.3)

Result of the Danielson-Lanczos Lemma can be rewritten in the abbreviated form as

F (k) = Feven(k) + T (N, k)Fodd(k), (3.4)

1Apparently the same number of operations is needed to calculate its inverse (3.2).
2For details see section 3.1.7.
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which is called (DIT) “butterfly”. In (3.4) Feven(k) stands for DFT from even

samples and Fodd(k) for odd samples of the original signal.

T (N, k) = e−i2πk/N (3.5)

is called (DIT) “twiddle” factor. A practical impact of this lemma is that by

application of it a significant number of operations can be spared. It is apparent

the N point DFT requires N2 complex multiplications. After application of this

lemma it is reduced to N2/2. We cannot say that the computational load is halved

in respect to the N point DFT since some overhead for twiddle factor multiplication

and summation is needed. However the total calculation time should be close to 1/2

of the N point DFT as these operations are not quite expensive.

The idea of FFT is that the Danielson-Lanczos Lemma can be applied recursively.

So in fact we need not to perform N/2 point DFT but two N/4 point DFT’s for

each N/2 transform etc. This is the reason why a calculation of FFT is extremely

simple when total number of input samples obeys the condition N = 2m, where m

is a positive integer. In that case we can decimate the input signal to even and odd

halves up to one sample DFT is reached. A result of single sample DFT is the sample

itself. So what is needed now is to perform a backward hierarchy of butterfies, i.e.

two point DFT’s3, and summation to obtain the result.

Fortunately it is not needed to perform even and odd samples decimation during

the FFT calculation itself. Much faster way is to convert the input signal to the

bit reversed order (see 3.1.3). My in-place implementation of DIT FFT algorithm of

N = 2m samples in bit reversed order is

void dit_fft( int p, int N, __complex__ *f ) {
if ( N>1 ) { /* if the signal size is greater than one */

int N2=N>>1, p2=p+N2, k;
__complex__ t, b;

dit_fft(p, N2, f); /* do FFT on even samples */
dit_fft(p2, N2, f); /* do FFT on odd samples */

3This is why this sort of algorithms are called Radix 2.
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for ( k=0; k<N2; k++ ) {
t = f[p +k]; /* calculate DIT butterflies */
b = f[p2+k] * ( cos(2.*M_PI*k/N) - I*sin(2.*M_PI*k/N) );
f[p +k] = t + b;
f[p2+k] = t - b;

}
}

}

What is especially nice is that the implementation directly follows our mathematical

derivation. To calculate DIT FFT of our signal we should call it as dit_fft(0,N,f).

3.1.2 Radix 2 Decimation in Frequency FFT Algorithm

A different but similar approach can be used to implement the FFT algorithm. In

previous chapter is discussed FFT implementation which is based on decimation in

time. The second type of implementation of FFT algorithm is based on decimation

in frequency (DIF) and can be more suitable for some cases discussed further.

Derivation of DIF FFT algorithm can be based on slightly modified Danielson-

Lanczos Lemma. The difference is that we will not decimate the original signal to

even and odd samples but we will use the fact that N point DFT can be expressed

as a summation of two N/2 DFT’s of each half of the original signal. Therefore

F (k) =

N/2−1∑
n=0

f(n)e−i2πkn/N +
N−1∑
n=N/2

f(n)e−i2πkn/N

=

N/2−1∑
n=0

[
f(n) + f(n+N/2)e−iπk

]
e−i2πkn/N

=

N/2−1∑
n=0

[
f(n) + f(n+N/2)(−1)k

]
e−i2πkn/N .

(3.6)

From the last expression in (3.6) can be seen that it is worth to separate the one DFT
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to two N/2 point DFT’s for even and odd k. So one can write

F (2k) =

N/2−1∑
n=0

[
f(n) + f(n+N/2)

]
e−i2π2kn/(N/2)

F (2k + 1) =

N/2−1∑
n=0

[
f(n)− f(n+N/2)

]
e−i2πn/Ne−i2π2kn/(N/2),

(3.7)

which shows the DIF butterfly needed to be calculated in our implementation. this

algorithm is called Decimation in Frequency FFT just because the frequency compo-

nents are divided to even and odd parts. My in-place implementation follows.

void dif_fft( int L, int N, __complex__ *f ) {
if ( N>1 ) { /* if the signal size is greater than one */

int N2=N>>1, R=L+N2, n;
__complex__ l, r;

for ( n=0; n<N2; n++ ) {
l = f[L+n];
r = f[R+n];
f[L+n] = l + r; /* calculate DIF butterflies */
f[R+n] = (l - r) * ( cos(2.*M_PI*n/N) - I*sin(2.*M_PI*n/N) );

}

dif_fft( L, N2, f ); /* do FFT on left half */
dif_fft( R, N2, f ); /* do FFT on right half */

}
}

3.1.3 Radix 2 Bit Reversal Sample Reordering

In both DIT or DIF FFT algorithms is needed to perform sample reordering. The

principal difference is that in case of DIT algorithm we have to do reordering be-

fore FFT (in time domain) and in case of DIF algorithm after FFT (in frequency

domain). The reordering can be done during the calculation what is rather slow

since a reordering of all the samples is needed. Fortunately sample reordering can be

excluded completely from the calculation process.

The task of this section is to simplify a process of recursive decimation of input

signal to its even and odd samples. If we consider we have N = 8 samples in our
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input signal (so that N = 2b, where b = 3) the even/odd decimation of the signal is

shown in the middle of table 3.1.

level 1 in binary
000
001
010
011
100
101
110
111

level 1 level 2 level 3
0 0 0
1 2 4
2 4 2
3 6 6
4 1 1
5 3 5
6 5 3
7 7 7

level 3 in binary
000
100
010
110
001
101
011
111

Table 3.1: Recursive even/odd sample decimation.

It is shown here that we need b = log2N levels of recursion to decimate the signal

to set of two point signals. In the middle table, for the smallest level of recursion,

can be seen the original sample ordering and for highest level the final ordering is

shown. To help us realize the reordering is pretty simple4 there are two tables added

which shows the input and output sample indices as binary numbers. The only thing

to do is to reverse bits in the index numbers! Furthermore, if we consider in-place

reordering the most of samples will hold their original position (they have the same

index), otherwise the two samples should be swapped. For instance, our bit reversal

reordering filter is that we swap samples 1 ↔ 4 and 3 ↔ 6. In analogous way can

reordered any N = 2b point signal. My implementation of bit reversal reordering of

complex signal s which has b = log2N bit indices follows.

void reorder( __complex__ *s, int b ) {
int i, n, l, h;
__complex__ t;

for ( i=1; i<(1<<b)-1; i++ ) { /* for all5 the orders do */
for ( l=1, h=1<<(b-1), n=0; h; ) { /* calculate bit reversed order */

n = i&l?n^h:n;
l <<= 1;

4What is not apparent when we use decimal numbers.
5Except the first and last where swapping can never happen.
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h >>= 1;
}
if ( n>i ) { /* swap only if bit reversed order>original order */

t = s[n];
s[n] = d[i];
s[i] = t;

}
}

}

3.1.4 Normalized FFT

One more important thing to mention is the FFT algorithms calculate unnormalized

DFT of the input signal. Therefore the amount of energy present in the input signal

is not conserved in frequency domain after FFT. The discrete variant of Parseval’s

Theorem can be used to fix it. So the following equation

N−1∑
k=0

F (k)F ∗(k) =
1

N

N−1∑
n=0

f(n)f ∗(n) (3.8)

must hold to let the signal and its spectrum contain the some amount of energy. In

other words it means we have to divide each sample of the entire signal by N either

before or after FFT.

3.1.5 Inverse FFT

Up to now we have discussed only forward FFT algorithms. There are a couple of ways

to calculate backward (inverse) FFT. The simplest one is to realize the forward and

backward DFT differs only in the sign in the Fourier basis6 (3.1), (3.2). Therefore if

we want to make IFFT from FFT, the only thing to change is the sign in the twiddle

factor (3.5). Alternatively we can calculate IFFT directly by an unchanged FFT

algorithm because

f ∗(n) =
1

N

N−1∑
k=0

F ∗(k)e−i2πkn/N . (3.9)

6Because the forward and backward Fourier bases are complex conjugated.
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Hence after conjugation of F (k), performing FFT, normalization and conjugation of

the result f(n) we have the inverse FFT.

3.1.6 Multidimensional FFT

It is not needed to change the FFT algorithm completely in order to perform multi-

dimensional FFT. The basic idea is to compose the multidimensional transformation

from one dimensional FFT with a sample stride. We can demonstrate this fact on

the following 2D FFT example.

We will theat a 2D X×Y point complex signal f(x, y) as one dimensional N = XY

point f(x). Then one dimensional N point FFT of f(x) with stride S is denoted

FFTS[f(x), N ]. To calculate 2D FFT we need to perform 1D FFT’s of all rows and

all columns present in f(x):

f1(x) = F (kx, y) = FFT1[f(yX), X] ∀y ∈ {0, 1, ..., Y − 1}
F (kx, ky) = FFTX [f1(x), Y ] ∀x ∈ {0, 1, ..., X − 1}

(3.10)

This idea can be easily generalized to more dimensions. Thus the only thing to modify

in presented FFT algorithms is a sample stride during the FFT calculation.

3.1.7 Algorithmic Complexity of FFT Algorithms

We know the FFT algorithms have the complexity of O(N logN). It tells an ap-

proximate number of operations needed to calculate FFT of a signal consisting of

N samples. Because of the fact this value is only an estimation, we present here

exact number of butterfly operations calculated by FFT in order to do slightly more

precise prediction of calculation time. If we look back on table 3.1, it can be seen

that m = log2N levels of recursion are needed, where N = 2m is the total number of

samples, m > 0, m is an integer, to decimate the input signal to N/2 two-point DFT

signals. So we have to calculate N/2 butterflies for the last level of recursion. If the

recursion is backtraced, it can be seen that it is needed to calculate N/2 butterflies
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for each level of recursion, so the total number of butterflies is:

B =
N

2
m =

N

2
log2N. (3.11)

Thus, for instance, FFT of a N = 4096 point signal requires B = 24576 butterflies

to be calculated. DFT of the same signal requires 16777216 Fourier base multipli-

cations7. If the scaling constant and logarithm base is neglected we obtain the FFT

algrorithm complexity of O(N logN).

3.2 Useful FFT Filters

3.2.1 FFT Convolution

It is possible to calculate cyclic convolution8 using FFT. That is because of the

convolution theorem. It says that a cyclic convolution in space domain is equal to

multiplication in frequency domain:

a ∗ h = F−1
[
F (a)F (h)

]
, (3.12)

where F is normalized forward FFT and F−1 is inverse FFT.

3.2.2 Phase Correlation

Phase correlation was used to fit photographed slices of the Visible Human ProjectTM

cadaver together in order to do volume rendering. The phase correlation is defined as

P = F−1

[
F ∗(a)F (b)

|F ∗(a)F (b)|

]
, (3.13)

where a and b are the shifted images. After calculation of phase correlation (3.13), ten

biggest peaks in P is found and for all the peaks is checked the difference between the

original image a and shifted image b by means of error metric (6.13). The shift, where

the metric gives the smallest error is chosen to be correct. The results of correcting

248 slices of resolution 2069× 1554 is shown in fig.5.4.

7Which is almost as expensive as butterfly calculation.
8see section 2.4.



Chapter 4

Wavelets

4.1 Why wavelets?

U
p to now we have discussed only transforms calculating decomposition

of the entire signal to a linear combination of non-localized basis vectors.

Thus in general, a change of one coefficient in transform domain affects all

samples in reconstructed signal. The right opposite is the case of wavelets. The most

apparent comparison can be made if we consider FFT of a time domain signal. By

FFT of a signal we obtain an information about its frequency components precisely,

but we can say absolutely nothing about its frequency content in a particular time

interval shorter than a total duration of the signal. In case of wavelets one can

distinguish local features of a signal so an information about signal in limited time

and frequency band can be obtained. This is the reason why are wavelets frequently

used for feature detection and compression.

4.2 Uncertainty Principle and Wavelets

In quantum physics the Heisenberg uncertainty principle says that there exist

a limitation in accurancy of nearly simultaneous measurements of observables such

33
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as a particle position and it is momentum so that:

∆x∆p ≥ ~
2
. (4.1)

It says that product of dispersions in measurements of a particle position and mo-

mentum never goes below a certain limit. In other words it could be interpreted that

the more accurately is a position of a particle measured the worse results in measure-

ments of momentum can be seen and vice versa. This rule does not hold for position

and momentum observables exclusively. There is many of such observables for which

a similar condition holds.

This is what the uncertainty principle has in common with wavelets. Two of

such observables are frequency and time. Wavelets are localized in both time and

frequency domains and we cannot exactly know what frequency exists at what time

instantly, but we can only know what frequency bands exist at what time intervals,

both with limited finite width related by similar relation like 4.1, what is an analogy

with the Werner Heisenberg’s uncertainty principle found in 1927.

4.3 Properties of a General Wavelet Transform

A general wavelet transform can be described as a conversion of an input signal f(t)

to a weighted superposition of base functions ψi:

f(t) =
N−1∑
i=0

ciψi(t), (4.2)

where the functions ψi(t) are localized in both time1 and frequency domains and

should match features of the input signal so that less coefficients ci are needed to

describe the input signal. The localization of ψi is a very useful feature as almost

all real–life signals are limited in space and frequency domain what leads to better

decorrelation. The most frequently used characteristics of wavelets is a number of

1Or space domain in case of images.
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vanishing moments, what is actually a measure of how a function is smooth:∫ b

a

f(x)xidx = 0, (4.3)

for i = 0, 1, ...n − 1, where n is a number of vanishing moments. The higher is

the number of vanishing moments in a wavelet basis, the better smooth signals are

approximated by it.

Another useful property of the wavelet decomposition is that a signal can be ana-

lyzed at various resolution levels. It is mostly apparent in the dyadic wavelet decom-

position discussed further. There exist fast discrete algorithms performing wavelet

decomposition with complexity O(n) [15]. One of these algorithms is described here.

4.4 Wavelets and Multi–Resolutional Analysis

The definition of wavelets can be based on multi–resolutional analysis approach as

noted in [15]. Let us consider a vector space of square integrable functions in R:

L2 =
{
f :

∫ +∞

−∞
f 2(x)dx <∞

}
. (4.4)

In multi–resolutional analysis we decompose L2 to nested subspaces Vj such that their

union is L2:
+∞⋃
j=−∞

Vj = L2, (4.5)

and their intersection contains only the zero function:

+∞⋂
j=−∞

Vj =
{
∅
}
. (4.6)

In the dyadic case, i.e. when each subspace Vj is twice as large as Vj−1, a function

f(x) that belongs to one of these subspaces Vj has the following properties:

f(x) ∈ Vj ⇐⇒ dilatation f(2x) ∈ Vj+1,

f(x) ∈ V0 ⇐⇒ translation f(x+ 1) ∈ V0.
(4.7)
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If we can find a function φ(x) ∈ V0 such that the set of functions consisting of φ(x)

and its integer translates:

φ(x− k), k ∈ Z (4.8)

form a basis for the space V0, we call it a scaling function or father function. For

the other subspaces Vj (with j 6= 0) we define:

φj,k(x) ≡ 2j/2φ(2jx− k). (4.9)

Because the subspaces Vj are nested:

Vj ⊂ Vj+1, (4.10)

we can decompose Vj+1 to Vj and Wj what is the orthogonal complement of Vj in

Vj+1:

Vj ⊕Wj = Vj+1,

Wj ⊥ Vj.
(4.11)

The direct sum of the subspaces Wj is equal to L2:

+∞⋃
j=−∞

Vj =
+∞⊕
j=−∞

Wj = L2. (4.12)

This means that Vj is a “coarse resolution” representation of Vj+1, while Wj holds

the “high–resolution” difference information between Vj+1 and Vj. If we can find

a function ψ(x) ∈ W0 that obeys the translation property:

ψ(x) ∈ W0 ⇐⇒ dilatation ψ(x+ 1) ∈ W0, (4.13)

and such that the set of functions consisting of ψ(x) and its integer translates

ψ(x− k), k ∈ Z (4.14)

form a basis for the space W0, we call it a wavelet function or mother function.

For the other subspaces Wj (with j 6= 0) we define:

ψj,k(x) ≡ 2j/2ψ(2jx− k). (4.15)
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4.5 The Fast Wavelet Transform

A fast method how to calculate discrete wavelet transform is called fast wavelet

transform, which is realized by the filter bank algorithm. Because both V0 and

W0 are subspaces of V1:

V0 ∈ V1 and W0 ∈ V1,

we can express φ(x) in terms of the basis functions of V1:

φ(x) = 2
∑
k

hkφ(2x− k),

ψ(x) = 2
∑
k

gkφ(2x− k).
(4.16)

Because of the mutli–resolutional analysis, these relations are also valid between Vj+1,

Vj and Wj for arbitrary j. The filter coefficients hk and gk uniquely define the scaling

function φ(x) and wavelet ψ(x). The filter hk acts like a low pass filter and gk is a high

pass filter. Since Vj+1 = Vj ⊕Wj, we can express a function f(x) that is written in

terms of the basis functions Vj+1 in terms of the basis functions of Vj and Wj also:

f(x) =
∑
k

λj+1,kφj+1,k(x) =
∑
l

λj,lφj,l(x) +
∑
l

γj,lψj,l(x), (4.17)

with the transform coefficients λj,l and γj,l defined by:

λj,l =
√

2
∑
k

hk−2lλj+1,k,

γj,l =
√

2
∑
k

gk−2lλj+1,k.
(4.18)

This is called Fast Wavelet Transform (FWT) and has computational complexity

of O(n). The calculation itself is done in a way that hk and gk filters are applied to

f(x), then the results are decimated by half so the both filtered signals have the same

size as the original in total. The low–pass filtered part can be again successively

processed in the similar way.
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4.6 Orthogonal Wavelets

If the φj,k(x) and ψj,k(x) are orthonormal:

Vj ⊥ Wj,

〈φj,l, φj,l′〉 = δl−l′ ,

〈ψj,l, φj′,l′〉 = δl−l′δj−j′ ,

(4.19)

then we can calculate the coefficients of the decomposition:

f(x) =
∑
l

λj,lφj,l(x) +
∑
l

γl,jψj,l(x) (4.20)

by taking inner products with the scaling and wavelet functions:

λj,l = 〈f, φj,l〉,

γj,l = 〈f, ψj,l〉.
(4.21)

Decomposition to the wavelet basis is stable, so if the function f(x) is only slightly

changed, coefficients λj,l, γj,l are changed slightly as well. The Parseval’s identity

holds for orthonormal wavelets:

||f ||2 =
∑
k

λ2
j+1,k =

∑
l

λ2
j,l +

∑
l

γ2
j,l. (4.22)

4.7 Daubechies Orthogonal Wavelets

Daubechies [3] constructed scaling function φ(x) and wavelet ψ(x) with 2 vanishing

moments. The simplest case of Daubechies scaling function and wavelet is generated

by four–coefficient low–pass hk and high–pass gk filters. This type is called “DAUB4”

or 4–tap Daubechies wavelet filters. The 4–tap Daubechies filters have these coeffi-

cients:

hk = {0.4829629131445341, 0.8365163037378079,

0.2241438680420134, -0.1294095225512604}
(4.23)
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for low–pass filter and

gk = {-0.1294095225512604, -0.2241438680420134,

0.8365163037378079, -0.4829629131445341}
(4.24)

for high–pass filter. After a more careful look at the both filters we see they are not

completely uncorrelated. In fact, if we denote hk coefficients as c0, c1, c2, c3 we see

that gk = {+c3,−c2,+c1,−c0}. So that we are able to create a high–pass filter gk

only from knowledge of hk in the way that we mirror the coefficients and swap sign

of odd coefficients. These filters are called quadrature mirror filters (QMF) in

signal processing, because the coefficients are mirrored and:∑
k

h2
k =

∑
k

g2
k, (4.25)

i.e. sum of their quadrates equals for both the filters. The forward DAUB4 wavelet

decomposition of a discrete signal s of N samples can be then described as a cyclic

convolution (see 2.4.1). To demonstrate this we write it as a matrix–vector product:

t = Ms =

l0

h1

l2

h3

...

lN−4

hN−3

lN−2

hN−1



=



c0 c1 c2 c3 . . .

c3 −c2 c1 −c0 . . .

c0 c1 c2 c3

c3 −c2 c1 −c0

...
...

. . .

c0 c1 c2 c3

c3 −c2 c1 −c0

c2 c3 c0 c1

c1 −c0 c3 −c2





s0

s1

s2

s3

...

sN−4

sN−3

sN−2

sN−1



.

(4.26)

This demonstrates the first pass of the wavelet decomposition, i.e. transformation

of the first resolution level of a signal s to low–pass coefficients ln and high–pass hn.

This is an analogy of 4.11 where we try to express Vj+1 as Vj ⊕Wj. For that we need
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Vj to be orthogonal to Wj what is achieved by the fact that matrix M is orthogonal,

so its inverse must be its transpose:

MT = M−1 =



c0 c3 . . . c2 c1

c1 −c2 . . . c3 −c0

c2 c1 c0 c3

c3 c0 c1 −c2

...
...

. . .

c2 c1 c0 c3

c3 −c0 c1 −c2

c2 c1 c0 c3

c3 −c0 c1 −c2



. (4.27)

From the comparison of 4.26 and 4.27 one can see immediatelly that the following

conditions must be hold to fulfill it:

c2
0 + c2

1 + c2
2 + c2

3 = 1

c2c0 + c3c1 = 0
(4.28)

These equations are not sufficient as we have four unknowns, so we will require the

coefficients to have 2 vanishing moments (4.3) what yields these additional equations:

c3 − c2 + c1 − c0 = 0

0c3 − 1c2 + 2c1 − 3c0 = 0
(4.29)

These equations were first found and solved by Daubechies [3] and have the following

solution in analytical form:

c0 = (1 +
√

3)/4
√

2 c1 = (3 +
√

3)/4
√

2

c2 = (3−
√

3)/4
√

2 c3 = (1−
√

3)/4
√

2
(4.30)

Note that the coefficients noted in 4.23 and 4.24 are only approximations to this an-

alytical solution. There exit also higher tap daubechies filters with smoother wavelet

and scaling function shape, but not for all of those it is possible to find a solution in

closed form as in this case.
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4.8 Discrete Wavelet Transform

The application of 4.26 is not a complete forward wavelet transform as it is only the

first pass where highest resolution part of the signal is transformed. After calculation

of hx and lx in 4.26 we keep only low–pass lx values to which successive wavelet

transforms are applied hierarchycally. The hx values are the final wavelet coefficients

and they will not be further transformed. As the signal size is actually halved by

wavelet transformation in one resolution level, we stop the processing when the total

number of lx coefficients is less or equal to filter size. This transform is called the

discrete wavelet transform (DWT).

The inverse transform is calculated by the reversed algorithm, so that the sig-

nal is successively expanded from the lowest to the highest resolution from wavelet

coefficients.

a) Scaling function φ(x). b) Wavelet ψ(x).
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Figure 4.1: Scaling function and wavelet for Daubechies 4–tap decomposition.

4.9 Multidimensional Discrete Wavelet Transform

The multidimesional discrete wavelet transform can be done in a similar way as FFT,

described in 3.1.6, i.e. to perform one dimensional transform to rows and columns
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in case of 2D signal in two separate passes. When this approach is used, the final

wavelet spectrum is shown if 4.2b. This kind of calculation is quite expensive and is

a) Dyadic decomposition. b) Non–dyadic decomposition.

Figure 4.2: Spectrum of sun image for dyadic and non–dyadic wavelet decomposition.

not very suitable for analysis. For this reason the dyadic DWT is used frequently,

what is calculated in the way that the first pass of DWT is calculated for both the

rows and columns and further hierarchies of the transform is only applied to the low–

pass filtered subimage. This situation is shown at 4.2a. This approach is faster and

more suitable for compression.

4.10 Searching an Optimal Orthonormal Wavelet

Basis

The filters hk and gk must obey certain criteria in order to generate scaling function

and wavelet. The most important property is orthogonality of the transformation

matrix performing the wavelet decomposition:

MMT = 1, (4.31)
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what is for the 4–tap orthogonal wavelet decomposition fulfilled by 4.28. To find the

coefficients of the filters we have to specify yet another conditions that can be for

example the requirement that the coefficients have to have two vanishing moments

(4.29). But we have freedom specifying these additional conditions so my concern

was to figure out how does the other possible wavelet bases look like and how are

they suitable for encoding images.

This was done in the way that values of the coefficients were quantized and for

all the possible combinations of coefficients in this precision is checked whether an

orthogonal matrix can be formed from a particular combination of the coefficients. If

so, a testing image is then encoded by the dyadic orthogonal wavelet transform gener-

ated from these coefficients. The spectrum in the wavelet domain is then thresholded

in the way, that:

W (x, y) =

{
0 if 5000 ≤ W (x, y)2;

W (x, y) otherwise

and then reconstructed. The original and reconstructed image is compared in terms

n hk unnormalized hk normalized zeroed MSE
1 +0 + 0− 7− 7 +0.000000 + 0.000000− 0.707107− 0.707107 98.35% 108.37
2 −7 + 0 + 0− 7 −0.707107 + 0.000000 + 0.000000− 0.707107 96.48% 245.55
3 −2 + 1− 3− 6 −0.282843 + 0.141421− 0.424264− 0.848528 97.28% 188.25
4 −3 + 1− 2− 6 −0.424264 + 0.141421− 0.282843− 0.848528 96.88% 220.09
5 +1− 2− 6− 3 +0.141421− 0.282843− 0.848528− 0.424264 98.57% 87.63
6 −6− 2 + 1− 3 −0.848528− 0.282843 + 0.141421− 0.424264 96.89% 219.41
7 +1− 3− 6− 2 +0.141421− 0.424264− 0.848528− 0.282843 98.49% 95.79
8 −6− 3 + 1− 2 −0.848528− 0.424264 + 0.141421− 0.282843 97.33% 187.85
9 +3 + 6 + 2− 1 +0.424264 + 0.848528 + 0.282843− 0.141421 98.57% 86.44
10 +2 + 6 + 3− 1 +0.282843 + 0.848528 + 0.424264− 0.141421 98.49% 97.17
11 +0− 7− 7 + 0 +0.000000− 0.707107− 0.707107 + 0.000000 98.39% 109.62
12 −7− 7 + 0 + 0 −0.707107− 0.707107 + 0.000000 + 0.000000 98.40% 108.75

Table 4.1: 4–tap coefficients with 4–bit quantization forming orthogonal wavelet base.

of mean square error (6.13) and as the best transform is considered the one with the
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minimal MSE. The table 4.1 shows all low–pass hk coefficients from which an orthog-

onal base can be constructed with 4–bit quantization2 where the “Lena” (fig.6.1) is

used as sample image. The “zeroed” column denotes how many spectrum components

were set to zero before reconstruction. One can see that the least difference between

the original and reconstructed image is made by filter no.9, what is also the closest

to the one suggested by Daubechies (4.23). The visual comparison between selected

filters can be made in fig.4.3.

a) filter no.9 in table 4.1 b) filter no.6 in table 4.1

Figure 4.3: 4–tap filter image reconstruction comparison after thresholding.

4.11 Biorthogonal Wavelet Bases

The orthogonal wavelets (4.6) introduce several drawbacks. The most apparent one

is that the coefficients near boundaries in the hierarchycal decomposition are of high

magnitudes (see fig.4.2). This is because the fact that the orthogonal wavelet trans-

form is actually calculated by a cyclic convolution. To overcome this and additional

issues we introduce biorthogonal wavelets by relaxing the orthogonality conditions

but not on behalf of lossess reconstructability of the signal.

2There were found 12 bases from the total 65536 candidates.
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Not two but four filters are introduced by the biorthogonal transform, so we have

primal scaling function ψ, wavelet φ and their duals ψ̃, φ̃. Biorthogonality conditions

are:

Ṽj ⊥ Wj,

Vj ⊥ W̃j,

〈φ̃j,l, φj,l′〉 = δl−l′

〈ψ̃j,l, ψj′,l′〉 = δj−j′δl−l′ .

(4.32)

The biorthogonal wavelets form Riesz basis:

C1||f 2|| ≤
∑
l

λ2
j,l +

∑
l

γ2
j,l ≤ C2||f ||2, (4.33)

where C1 ≤ C2 are positive constants. This condition grants that the biorthogonal

wavelet basis is still stable. The coefficients λ and γ are obtained as inner product

with dual basis functions:

λj,l = 〈f, φ̃j,l〉,

γj,l = 〈f, ψ̃j,l〉.
(4.34)

This means that the dual filters h̃k, g̃k are used in the forward (analysis) part of the

wavelet decomposition and primal filters hk, gk are used for reconstruction (synthesis).

Furthermore signal extensions of both the sides of the signal have to be made since

the biorthogonal wavelet transform is not based on the cyclic convolution.

4.12 Antonini–Daubechies Biorthogonal Wavelets

The Antonini–Daubechies class of biorthogonal wavelets are frequently used in image

compression as it decorrelates images better than the ordinary orthogonal wavelets

because of a smarter solution of non–periodicity of a general image. This class of

discrete wavelet transform is also used in the JPEG2000 lossy image compression

codec.
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h̃k g̃k hk gk
+0.037828798579918 +0.037828798579918
−0.023849297515860 +0.064539050132459 −0.064539050132459 +0.023849297515860
−0.110624027489511 −0.040689752616599 −0.040689752616599 −0.110624027489511
+0.377402688109134 −0.418092440725732 +0.418092440725732 −0.377402688109134
+0.852698653219295 +0.788484872206183 +0.788484872206183 +0.852698653219295
+0.377402688109134 −0.418092440725732 +0.418092440725732 −0.377402688109134
−0.110624027489511 −0.040689752616599 −0.040689752616599 −0.110624027489511
−0.023849297515860 +0.064539050132459 −0.064539050132459 +0.023849297515860
+0.037828798579918 +0.037828798579918

Table 4.2: Antonini-Daubechies 9/7 tap dual and primal filter coefficients.

In the first phase the dual (analysis) h̃k, g̃k filters are applied and the primal

(synthesis) hk, gk filters are used for reconstruction. The shape of scaling functions

φk for the Antonini–Daubechies biorthogonal analysis is illustrated in fig.4.5. In fig.4.6

is shown how the synthesis scaling function behaves near the signal boundary. This

can be done because the signal is extended in the way shown in fig.2.1a on the left

side and fig.2.1b on the right side when the analysis filter is applied. In fig.4.4a is

a) Coefficients. b) basis vectors for 16× 16 tiling.

Figure 4.4: Antonini-Daubechies 7/9 tap biorthogonal synthesis filter demonstration.

shown downsampled “Lena” image to 16× 16 pixel resolution in the wavelet domain.

Basis vectors of the synthesis transformation are shown in fig.4.4b.
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Figure 4.5: Impulse responses for the 3rd, 4th, 5th spectral coefficient.
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Figure 4.6: Impulse response for the 8th spectral coefficient.



Chapter 5

Volume rendering

A
nalysis of volume data is quite complicated task to solve. There exist

several approaches to do such analysis. The basic one is to decompose

a 3D object to slices and to analyze them as usual images. This method

allows us to look inside the volume of 3D object but seems to be unusable when

our demand is to observe the object in a different direction. Then a 3D visualization

technique is likely to be used. The basic methods of such 3D visualization are based on

extraction of polygonal meshes describing isosurfaces1. One can enjoy a 3D impression

when observing such isosurface but a disadvantage of it is that the isosurface is in

fact two dimensional so one has to extract more such isosurfaces to predict how

a property of 3D object changes in volume. Furthermore, algorithms of isosurface

extraction are rather complicated and often erroneous for a complex 3D objects. Our

approach is to employ a volume rendering technique, which is intended to consider

volume information as native 3D. Unfortunately this technique is very computationaly

expensive so optimizations and speedup is of our particular importance. The purpose

of this chapter is to develop a volume rendering method, apply it to large scale VHP

volume dataset and conclude with discussion.

1A surface on which a feature of the 3D object is (almost) constant.
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5.1 Principles of Volumetric Raycasting

In order to develop a suitable technique of volume rendering we must define how the

3D object will actualy be analyzed. First of all we want to analyze a 3D object from

various points of view and directions. Therefore a position of an observer and his

viewing orintation has to be specified. Then, because of the fact we will display an

image of the 3D object on a 2D screen, we have to use some method of projection.

Since a human perception of observing a 3D scene is similar to linear perspective pro-

jection we will use such projection to let the result look natural to a human observer.

Finaly, because we have a volumetric object, it is good idea to have a possibility to

“see in depth”, i.e. to model translucency of the data. All the noted techniques are

discussed in the following sections.

5.1.1 Principles of Linear Perspective Projection

The linear perspective projection is defined by a position of observer, orientation of

view and his field of view. The principle of creating such projection we can imagine

as projections of spatial points into the perspective plane, which is perpendicular to

field of view axis. The axis passes through center of the perspective plane, which

Figure 5.1: Illustration of the linear perspective projection.
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is limited by a field of view of the observer. Because of specific shape of connection

lines between the observer position and edges of perspective plane it is often said that

a linear perspective projection is defined by position and orientation of perspective

pyramid. In fig. 5.1 is shown the perspective pyramid (blue) and a triangle whose

vertices are projected to perspective plane (cyan).

There exist a lot of methods for creating perspective projections on a computer.

The most of them can be classified to two groups. The first is based of vertex projec-

tions, where all vertices of a 3D object is projected and then connected by polygons.

The second are methods based either on raytracing or raycasting techniques, where

intersections between ray cast from observer (or from light source) and a 3D object in

scenery is calculated. In both the methods we have to employ orthogonal coordinate

system transforms in order to convert vertex coordinates to the observer’s coordi-

nate system or to define paths of rays to be cast into the scenery. These coordinate

transforms are described [6] by the following matrices of basic motions:

M1(x) =


1 0 0 x

0 1 0 0

0 0 1 0

0 0 0 1

 , M2(y) =


1 0 0 0

0 1 0 y

0 0 1 0

0 0 0 1

 , M3(z) =


1 0 0 0

0 1 0 0

0 0 1 z

0 0 0 1

 ,

(5.1)

M4(α) =


1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

 , M5(β) =


cos β 0 sin β 0

0 1 0 0

− sin β 0 cos β 0

0 0 0 1

 ,

M6(γ) =


cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1

 . (5.2)

The action of the first three matrices (5.1) is a translation and for (5.2) a rotation

around origin. The conversion of a vertex (x′, y′, z′)T in global coordinate system to
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a vertex (X, Y, Z)T in the observer’s coordinate system which is shifted of (x, y, z)

and rotated about axes of (α, β, γ) can be expressed as:
X

Y

Z

1

 =
6∏
i=1

Mi


x′

y′

z′

1

 , (5.3)

what is quite computationaly expensive. Since calculation of the transform is very

frequent, because moderate complex 3D scenes are composed from ≈ 103 − 105 ver-

tices which have to be transformed, a reduction of calculation overhead is welcome.

A basic simplification can be made if we separate action of translational and rota-

tional matrices, then the matrix order can be reduced to 3. We can calculate single

rotation matrix from first 3 rows and columns extracted from (5.2), denoted m:

R(α, β, γ) =
6∏
i=4

mi =


cos β cos γ − cos β sin γ sin β

sinα sin β cos γ + cosα sin γ − sinα sin β sin γ + cosα cos γ − sinα cos β

− cosα sin β cos γ + sinα sin γ cosα sin β sin γ + sinα cos γ cosα cos β

 .

(5.4)

So the coordinate transformation which is nearly optimal for general rotation angles

and translations is 
X + x

Y + y

Z + z

 = R(α, β, γ)


x′

y′

z′

 . (5.5)

5.1.2 What Raycasting is

The basic idea of the raycasting is to cast a ray through a volume object for every

single pixel on the screen and trace properties of the volume object along the ray

in order to return a single pixel value per ray to describe volume properties of the
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Figure 5.2: Illustration of rays cast from the position of observer.

object. The situation is shown on fig.5.2, where position and orientation of the

observer is defined by the perspective pyramid and rays are colored black with the

tracing direction away from the observer. Note that in the fig.5.2 is demonstrated

creating of raycasted projection to a screen of 4× 3 pixel resolution which is mapped

to the perspective plane and rays passes through the center of their corresponding

pixels, what is denoted by small blue spheres in the image.

5.2 Voxel interpolation

Since a voxel, as a cubical element of 3D scene, is not isotropic, some unnatural arti-

facts are often introduced in rendered images. To suppress creation of such artifacts,

techniques of upsampling are used. These techniques allows “walk” along a ray by

sub-voxel steps, what often result in better image.

5.2.1 Trilinear Interpolation

For sub-voxel interpolation can be used a well-known linear interpolation in three

dimensions, which can be calculated by successive application of usual 1D linear
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interpolation:

L(y1, y2, f) = y1 + (y2 − y1)f, (5.6)

where we assume that for y1 = f(x1) and y2 = f(x2), x2 > x1 and x2 − x1 = 1.

The constant f ∈ 〈0, 1〉 specifies a position between x1 and x2. Then the trilinear

interpolation between eight neighbouring voxels intensities yn is:

L3(y1, y2, y3, y4, y5, y6, y7, y8, fx, fy, fz) =

L

{
L
[
L(y1, y2, fx), L(y3, y4, fx), fy

]
, L
[
L(y5, y6, fx), L(y7, y8, fx), fy

]
, fz

}
.

(5.7)

5.2.2 Tricosine Interpolation

Trilinear intepolation can be enhanced a little in order to smooth discontinuities on

voxel boundaries. A way how ensure smooth interpolation2 is cosine interpolation,

which if

k(f) = 1− cos(fπ)/2, (5.8)

is defined as:

C(y1, y2, f) = y1

[
1− k(f)

]
+ y2k(f). (5.9)

Then the tricosine interpolation is:

C3(y1, y2, y3, y4, y5, y6, y7, y8, fx, fy, fz) =

C

{
C
[
C(y1, y2, fx), C(y3, y4, fx), fy

]
, C
[
C(y5, y6, fx), C(y7, y8, fx), fy

]
, fz

}
.

(5.10)

2The same derivatives, equals to zero on a voxel boundary.
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5.2.3 Tricubic Interpolation

In order to perform even smoother interpolation, the tricubic interpolation can be

used. If

p = (y4 − y3)− (y1 − y2),

q = (y1 − y2)− p,

r = y3 − y1,

s = y2,

(5.11)

the cubic interpolation is:

S(y1, y2, y3, y4, f) = pf 3 + qf 2 + rf + s. (5.12)

The tricubic interpolation S3 is defined in the same way as (5.10), but it requires 16

voxel intensities on input.

5.3 Volume Renderer Design

The developed volume rendering software saves all the volume data in compressed

form in the way that the volume data is decomposed into cubes3 so that only this part

of volume is needed to be stored in memory when a ray passes through it. Frequently

used cubes are stored in memory in order to prevent a need to decompress them when

a ray penetrates to another cube that was traced recently. The software allows to

use only a memory specified by an user. To keep only last recently used cubes the

LRU [10] algorithm is used. The software uses progressive rendering in the way that

at first only a fraction of total rays is cast into a 3D scenery. After calculation of

resultant colors, these are interpolated for pixels for which no rays have been cast

and shown on the screen. This allows an user to see a temporary result of rendering

even if rendering goes on. In fig.5.3a is demonstrated a projection from the volume

renderer made in the full resolution and 5.3b shows a projection which calculation

3of 8× 8× 8 up to 32× 32× 32 voxels each.
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was 16–times faster as only 1/16 of total rays was needed to be cast into the scenery.

The pixel values are calculated in a way that pixel intensities are gathered along a ray

in a given4 precision so that the result is a vector of intesities ~Vc of arbitrary size for

each channel c in the volume dataset. The ~Vc can be processed in various ways to

obtain a single pixel value to be displayed on the screen. At first a convolution with

thin gaussian TIIR kernel is calculated to suppress sharp intensity jumps and similar

artifacts caused by discontinuities between voxels:

K/2−1∑
k=−K/2

~Vc(i− k)h(k), ∀i, c (5.13)

then opacity tracing algorithm is used. Description of such techniques can be found in

[8], [4]. The opacity tracing algorithm works in the way that a certain small amount

of the first intensities along the ray are ignored in order to skip low–intensity layer

around a volume object. Then the final pixel intensity of c–th channel of the volume

data is calculated as

Ic =
1

N2 −N1

N2∑
i=N1

T i−N1 ~Vc(i), ∀c (5.14)

where T is translucency coefficient5, N1 is the index in ~Vc for the first not ignored

intensity value, N2 is an index in ~Vc, where the contribution to the final pixel intesity

is neglectable due to small value of T i−N1 in 5.14. Then the final color ~P in RGB

space of the pixel displayed on screen is calculated like

~P =
∥∥∥ C∑
c=0

~PcIc

∥∥∥, (5.15)

where C is the cotal number of channels in volume data, Pc is normalized base color of

the channel in RGB color space. Normalization in 5.15 denotes normalization and/or

saturation of the RGB components in ~P .

4mostly sub–voxel
5T ∈ (0, 1〉, where for T = 1 is the object completely translucent
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a) full resolution b) calculated from 1/16 of all rays

Figure 5.3: Progressive rendering demonstration.

a) uncorrected slices b) aligned by phase correlation

Figure 5.4: Demonstation of phase correlation shift detection in volume rendering.



Chapter 6

Lossy Image Compression

6.1 Karhunen-Loève Transform

T
he Karhunen-Loève transform, also known as principal orthogonal decom-

posion or Hotelling transform, creates optimal basis to convert correlated

input random vectors to its decorrelated form. Its application is very

straightforward in image compression as pixel values in a natural picture such as

a photography are highly correlated.

6.1.1 Principles

The basic idea is to decompose an input image to statistically significant number

F of smaller not overlapping fragments and consider them random vectors of V ∈
{v0, v1, ..., vF−1} of N samples each. Then elements of N ×N autocovariance matrix

CV is calculated as:

CV(x, y) =
1

F

F−1∑
f=0

[
vf (x)− v(x)

][
vf (y)− v(y)

]
=

=
1

F

F−1∑
f=0

vf (x)vf (y)− v(x)v(y),

(6.1)

57
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where v(n), n ∈ {0, 1, ..., N − 1} is mean value of vf (n), ∀f ∈ {0, 1, ..., F − 1}. The

calculated CV is always symmetric. Thus an orthogonal matrix K can be always

found to diagonalize CV. So for K the orthogonality condition:

KKT = KTK = 1, (6.2)

where 1 is the identity matrix, must hold. If we denote eigenvalues and normalized

column eigenvectors of CV as λi and ei, i ∈ {0, 1, ..., N − 1}, then we can arrange all

the eigenvectors ei to form the matrix K. If we sort the eigenvectors in K in the way

that the eigenvector corresponding to the largest eigenvalue is in the first column and

the other eigenvectors are sorted with decreasing eigenvalues, then

kf = KTvf (6.3)

is called Karhunen-Loéve transform (KLT), which converts vf to decorrelated vector

kf . The decorelation property of KLT can be shown as diagonalization of CV:

KTCVK =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λF

 , (6.4)

where we see the output matrix is diagonal and contains only eigenvalues (or degrees

of freedom) of selected image fragment collection. The inverse transformation can be

done simply exploiting the orthogonal property (6.2) of K as:

vf = Kkf . (6.5)

6.1.2 Eigenvectors and Eigenvalues Calculation

The most difficult problem in calculation of KLT is calculation of eigenvectors of au-

tocovariance matrix CV. There exist various iterative methods like Jacobi transfor-

mations of symmetric matrix or two-pass method which uses Givens or Householders
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a) original image b) optimal 8× 8 KLT basis vectors

Figure 6.1: Karhunen-Loéve 8× 8 transform demonstration.

reduction to tridiagonal form and successive application of either QR or QL algo-

rithm. Unfortunately these methods are beyond the scope of this dissertation and

their proper description can be found in [11].

6.2 Discrete Cosine Transform

Another method of image decorrelation is the Discrete Cosine Transform (DCT).

In numerous cases DCT is used frequently in practice since there exist lots of fast

algorithms which calculates DCT decorrelation much faster with results close to the

KLT. Many image compression algorithms are based on DCT, for instance JPEG [16].

There exist various types of DCT which are designed to fast image decorrelation in

separate image fragments or by partially overlapped fragments1. The most frequent

DCT type is DCT-II, which is in 1D defined as

F (k) = C(k)
X−1∑
x=0

f(x) cos
k(2x+ 1)π

2X
, (6.6)

1So called Lapped Orthogonal Transform (LOT).
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where X is total number of samples in f(x), and

C(k) =


√

2
N

if k 6= 0;√
1
N

otherwise.
(6.7)

In our case we will use 2D DCT-II, where we can also compose it from row and column

1D transforms in the same fashion as in 3.1.6. Then we can write the 2D DCT-II as

F (kx, ky) = C(kx)C(ky)
Y−1∑
y=0

[
X−1∑
x=0

f(x, y) cos
kx(2x+ 1)π

2X

]
cos

ky(2y + 1)π

2Y
. (6.8)

As we have mentioned, the DCT transform is used because its calculation speed. It is

so because close similarity of DCT basis vectors with their optimal ones for a natural

picture such as a photography shown at fig.6.1a. To see the similarity, compare the

optimal basis vectors calculated by KLT in the fig.6.1b with fig.6.2b. These discrete

bases are calculated as a spatial response to impulse in KLT2 or DCT3 domain. We

can interpret the shape of basis vectors shown at fig.6.2a as an information of what

type of detail from an input image contains a single DCT-II basis coefficient. In

particular, we can say that the most of horizontal information contain the leftmost

coefficients, the highest details the coefficient in bottom right, etc.

2Fig.6.1b.
3Fig.6.2.
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a) natural order b) variance descending (zig-zag) order

Figure 6.2: DCT basis vectors for 8× 8 transform.

6.3 Discrete Walsh-Hadamard Transform

Another method of KLT bases approximation is the discrete Walsh-Hadamard trans-

form (DWHT). It is one of the simplest transformations used in image decorrelation.

It uses even simplier shape of basis vectors:

F (k) =

√
1

X

X−1∑
x=0

f(x)sign
[
cos

k(2x+ 1)π

2X

]
, (6.9)

which makes this transform extremely simple to calculate because the sign function

is defined as

sign(x) =

{
1 x > 0

−1 x < 0
(6.10)

Hence the DWHT transformation matrix consist only from −1 or +1 elements mul-

tiplied by a scaling coefficient. For instance, the 4 point 1D DWHT matrix is:

K =

√
1
4


+1 +1 +1 +1

+1 +1 −1 −1

+1 −1 −1 +1

+1 −1 +1 −1

 (6.11)



62

a) natural order b) variance descending (zig-zag) order

Figure 6.3: DWHT basis vectors for 8× 8 transform.

6.4 DCT–based Lossy Compression Algorithm Pro-

posal

The purpose of all compression algorithms in image compression is to reduce the in-

formation capacity up to its minimum in the fastest possible time at minimal memory

requirements. Furthermore, the quality loss of decompressed image should be mini-

mal. Unfortunately, compromises have to be made because these optimum criteria are

dependent on each other. In particular, the most of recent lossy image compression

algorithms are based on the DCT (section 6.2) even if it is not optimal, because the

calculation time is much shorter in comparison with KLT (section 6.1).

The preferred scheme for the compression algorithm is progressive. It means that

an original image O to be compressed is stored at various levels of detail and only

differences are encoded. The progressive scheme was chosen because of error resistence

and possibility of displaying preview at various scales of image even from its small

loaded context. The encoding itself is based on 2D DCT but is designed to be easily

modified to KLT. The original image O is decimated to a size to fit one single 2D DCT

fragment and saved to output file4. Then the fragment is upsampled to the original

4It means quantized, zig-zag ordered, RLE and entropy encoded.
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I0 I1 = I0 +D0 I2 = I1 +D1 I3 = I2 +D2 I4 ≈ O

R0 = O − I0 R1 = O − I1 R2 = O − I2 R3 = O − I3 R4 = O − I4

D0 D1 D2 D3 D4

Figure 6.4: Progressive 8× 8 encoding with zero-padded 2D IDCT prediction.

size of O with suitable technique of interpolation. After it the upsampled image I0

(see fig.6.4 where the fragment size is 8× 8 pixels) is subtracted from O which yields

R0. That was the first step and the following steps are calculated iteratively in the

way that the number of DCT fragments is increased by factor of 45 per iteration what

ensures convergence to the original image:

Di =↑ DCT
(
↓ Ri

)
,

Ii+1 = Ii +Di,

Ri+1 = O − Ii+1,

i = i+ 1,

(6.12)

where ↓ denotes decimation and ↑ denotes interpolation. After each iteration Di is

encoded and saved to output file. The total number of iterations is equal to b = log2 S,

52 per dimension
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where S is the largest dimension of image, where S ≤ 2b. This method gives better or

comparable compression in comparison with recent lossy image compression formats

with comparable signal–to–noise ratio.

6.4.1 Image Interpolation

The most important part to achieve the best possible compression in the progres-

sive encoding scheme is an interpolation algorithm which is used to predict pixels

beyond resolution of decimated original image. As the best interpolation algorithm

which gives the best prediction we consider an algorithm whose predictions makes

the smallest difference between the original image and interpolated image during the

encoding iteration. To measure such differences there are used various metrices. We

will use mean square error (MSE) metric, defined as

MSE(Ii) =
1

XY

Y−1∑
y=0

X−1∑
x=0

[
O(x, y)− Ii(x, y)

]2

, (6.13)

where O is the original image and Ii is the interpolated image in the i-th iteration.

As a sample image is used photography of HeLa cancer cells6, fig.6.5a.

original image zero-padded FFT constant bilinear zero-padded DCT

a) b) c) d) e)

Figure 6.5: Image interpolation from decimated image 8× 8 to 256× 256 pixels.

From the fig.6.6 can be seen that from the usual interpolation methods the DCT

based interpolation gives the best prediction. This is the reason why this method is

used for interpolation in the compression algorithm.

6Measured by Mgr.Pavĺına Bečvářová from Dept. of Biophysics, Medical Faculty, Masaryk Uni-
versity in Brno.
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Figure 6.6: Pixel predictions from decimated images with increasing iteration.



Chapter 7

Lossless Image Compression

A
different treatment to image compression has to be made in order to re-

move redundant information from input data with a request of lossless re-

construction of the original image. There exist a few approaches to lossless

compression algorithms. The simplest approaches are RLE algorithms that replaces

large sequences of identical characters with length-code pairs. The other classical

methods used frequently are alphabet substitution approaches such as Shannon-Fano

coding or Huffman [7] coding. These methods construct binary trees in order to assign

the smallest bit sized code to the most probably used characters. To the other group

belong dictionary or sequentional based methods from a wide Lempel-Ziv family such

as LZ77 [17] or LZ78 [18]. These methods uses dynamically updated databases of used

sequences, where a compression is achieved because a single code is sent out for every

frequently used sequence. In our approach we use multiple level compression, where

arithmetic coding scheme is used at the end, which achieves the best compression in

general from all the mentioned methods.

The arithmetic coding is a bit similar to Huffman coding in the way that it assigns

less bit-sized codes to the most probable characters. The principal difference is that

in case of arithmetic coding the codes need not be of integer bit length. In fact the

output of arithmetic coder is one huge binary number which represents all characters

present in message of any finite alphabet.

66
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7.1 Run–Length Encoding Techniques

The Run–length encoding (RLE) is frequently used as the first pass compression

to reduce length of highly redundant message before sequential or entropy coders are

applied in the following passes. It is highly recommended to apply further compres-

sion to RLE encoded data as the RLE itself comes with rather poor compression in

general. The purpose of RLE is that long runs of same characters are badly encoded

by entropy coders as the long runs significantly affect probability distribution of char-

acters in the message what degrades entropy coder performance. The compression

performance of sequential coders is affected as well. To avoid these problems we re-

place an information about long runs by a code that represents length of a run. So

that RLE encoded message should no longer contain long runs.

7.1.1 Basic RLE Scheme

The most straightforward implementation of the RLE codec is likely to replace each

character of an input message by a pair of code telling us how many times is the

following character repeated and the character itself. So the RLE encoding of a sample

message looks like this:

M = “abaaaaaacdaaaaca” =⇒ MRLE = “1a1b6a1c1d4a1c1a”.

We can see this approach is rather wasteful as the encoded message could be twice

as large as original in the worst case. Even if our sample message M has two runs,

the output message has exactly the same number of characters as the original so the

idea needs to be slighly improved.

7.1.2 Improved RLE Scheme

To improve a compression of RLE we have to think either from the coder and de-

coder point of view. The biggest waste in the previous approach was caused by the

requirement that each character is transformed to a pair. We can output the pair
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only when needed. The problem is to realize how decoder will learn that it should

expect a character or a code specifying the run length. A simple assumption can be

made to resolve this. It is likely that we should expect a run in decoder if incoming

character is the same as the former one. So that we can replace all at least 2–character

sequences by the two characters and a number representing a run length. So this is

how it looks for a given message:

M = “abaaaaaacdaaaaca” =⇒ MRLE = “abaa4cdaa2ca” (7.1)

We see the message was shortened by this improvement but this design of RLE also

introduces an apparent drawback. In case of a message composed exclusively from

equal character pairs the message will be larger of about 1/3 compared to its original

length.

7.1.3 Switched RLE Encoding

The idea from the previous section can be modified by a consideration that code

specifying a run length could have two meanings depending on whether the order of

the code is even or odd. In the even case we assume that the length code specifies

length of non-run sequence and run length in the even case. This approach is rather

effective because character runs are bounded by non-run data at both the ends in

most cases. So the RLE of a given message is:

M = “abaaaaaacdaaaaca” =⇒ MRLE = “2ab6a2cd4a2ca” (7.2)

Coder can output zero even length code followed by non–zero odd length code when

a run is followed by another run of characters instantly. Because one character within

a message has finite size, say one byte, the length of either a run or non-run data is

limited to 255. When a very long sequence of non-run data is found, zero odd code

and non–zero even code can be sent to output. So in the worst case an output message

from this coder will be larger of about 1/128 when the original message contain no

runs.
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7.1.4 Hierarchycal Bitmap–based RLE Encoding

The most effective approach for the RLE encoding is the hierarchycal bitmap encod-

ing. The basic idea is to create a bitmap where is one bit reserved for each character

in a message. We set a corresponding bit to 1 if a character belongs to a run, 0

otherwise. Note that the first character of a run has the first bit set to 0 to let the

decoder know what character is repeated. This is illustrated on bottom of table 7.1.

We can reconstruct the original message from a knowledge of B and all characters

hierarchy B1 (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hierarchy B2 (0) 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

hierarchy B3 (1) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0

bitmap B 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0

message M a b a a a a a a c d a a a a c a

Table 7.1: Illustration of hierarchycal RLE encoding.

where bits are set to 0. The size of B can be significantly decreased by hierarchycal

encoding as there are many of bit runs present in it. In upper part of table 7.1 is

shown the hierarchycal decomposition, which is done in the way that the original B

is downsampled by a factor of two to B3, so that a bit in B3 assigned to two bits in B

is set to 1 when both the B bits are set to 1, zero otherwise. This is done because if

we know B3, we need to save only bits from B that have their respective bit in B3 set

to zero. It is likely that zero bits will prevail in B3 after this transformation, so that

we can use the similar decomposition of B3 to B2 but for zeros in B3. We can go on

subsampling the higher hierarchies up to the decomposition to lower hierarchies still

decreases the total bits for representing B. In our case we stop after B2. Then the

output of coder is a bit sequence from the lowest hierarchy up to B3 and all characters

for which B3=0:

M = “abaaaaaacdaaaaca” =⇒ MRLE = “(10101110) abaacdaaca” (7.3)

Note that the information about runs in M is encoded only to 8–bits, what is usually

a size of one character within the message. The bits written to output are shown in
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brackets in 7.3. The results achieved by this method depends highly on basic heuristic

what decides whether it is better to suppress 0’s or 1’s from a subsequent hierarchy.

Also different decimation by factor of 4 or 8 can be used in the decomposition in order

to improve compression.

7.2 Burrows–Wheeler Transform

This method based on block–sorting was first invented by D.J. Wheeler in 1983, but

was first published in 1994 [1]. The principle of the Burrows–Wheeler transform

(BWT) is that a block of data to be transformed is sorted lexicographically to put

similar contexts present within a data block together to be better encoded by entropy

coders. Thus BWT is not a compression method itself but leads to better performance

for further applied compression. The essential property of BWT is that the data can

be reconstructed without any losses to its original form.

7.2.1 Forward Burrows–Wheeler Transform

To demonstrate the forward BWT itself we use encoding of a message M =“abaca”.

First, one has to do a number of string rotations that equals the total characters within

the message (table 7.2a). The If is a position of the first character of the rotated

a) rotations of the input message b) sorted M and BWT output

If rotated M
0 abaca

1 bacaa

2 acaab

3 caaba

4 aabac

I If rotated, sorted M output MBWT

0 4 aabac c

1 0 abaca a

2 2 acaab b

3 1 bacaa a

4 3 caaba a

Table 7.2: Illustration of the forward Burrows–Wheeler transform.

message in the original string M . Then the rotated strings are lexicographically

sorted (table 7.2a) in the way that we keep an information of the original index I
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in If (table 7.2b). The output is then the last characters from the sorted strings

followed by the index I where If = 1. So the output is MBWT =“cabaa” and index

I1 = 3.

7.2.2 Backward Burrows–Wheeler Transform

The original message can be reconstructed from the input sequence MBWT =“cabaa”,

and index I1 = 3 because of properties of lexicographycal sorting. We are able to

reconstruct the original message if we assign an index I to each character of the

message and perform lexicographical sorting in the way that we store the sorted

indices to Ib. Then the reconstruction can be done by algorithm described in 7.3b

and the interpreation of it is shown in table 7.3a.

a) backward BWT demonstration b) algorithm of backward BWT

I MBWT Ib sorted MBWT

0
4

=⇒ c
4

=⇒ 1 a

1
5

=⇒ a
5

=⇒ 3 a

2
2

=⇒ b
2

=⇒ 4 a

3
1

=⇒ a
1

=⇒ 2 b

4
3

=⇒ a
3

=⇒ 0 c

1 i = I1

2 MBWT(i)→ output
3 i = Ib(i)
4 if i 6= I0 go to 2

Table 7.3: Illustration of the backward Burrows–Wheeler transform.

7.2.3 Why BWT Transformed Data Compresses Better

To understand this fact we have to define what a context is. A context of n-th order

in a given message is a selection of n+ 1 characters from the message where order of

the characters is conserved. If we consider message “data” then all possible contexts1

are “d”, “a”, “t”, “da”, “at”, “ta”, “dat”, “ata”. The high compressability of BWT

transformed data can be then illustrated in the way that BWT actually gathers

characters from a message with the same or similar contexts what decreases the local

1Of the first, second and third order.
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entropy of a non–random message as there is a high probability that in a sufficiently

long message the characters with similar contexts will be same or less different in

comparison with the original message. This leads to significantly better performance

of entropy coders.

7.3 Concept of Entropy (Redundancy Removal)

Coders

In order to understand methods of lossless compression it is needed to define a term

of entropy H used in field of information theory. The Shannon’s theorem [13] is

frequently used for it so it is presented here.

It seems quite natural that there exist some limiting rate of lossless compression

achievable by alphabet substitutions. For instance, let us have a message M =

(M0,M1,M2, ...) defined by an alphabet with finitely many characters Mj ∈ a =

{a0, a2, a3, ..., an−1}, ∀j ∈ {0, 1, 2, ..., N − 1}. Coding of one character apparently

requires log2 n bits so for all the characters in M is required N log2 n bits to express

it without losses. We can denote the number of bits required to express the first N

characters as B(a,N), then we can write that

lim
N→∞

B(a,N)

N
= log2 n. (7.4)

Shannon’s theorem asserts that there exists a nonnegative number H, the entropy

of probability distribution of the original alphabet, such that a new alphabet b =

{b0, b2, b3, ..., bn−1} consisting of variable length characters satisfies:

H ≤ lim
N→∞

B(b,N)

N
, (7.5)

and for every ε > 0 there exists a particular alphabet bε which satisfies:

lim
N→∞

B(bε, N)

N
≤ H + ε. (7.6)
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Let us assume that the characters in M occurs with probability P (ai) = pi, then the

entropy of message is:

H = −
n−1∑
i=0

pi log2 pi. (7.7)

The entropy H actually says that the average bit-size of code in an optimal alphabet

to encode the message M is H. It should be apparent from the inequality:

0 ≤ H ≤ log2 n, (7.8)

which can be interpreted in a way that the entropy of message is minimal, H = 0,

in case the input message consists of the same characters repeated forever, or that

the entropy is maximal, H = log2 n, if all the characters in the message are equally

probable. Hence a possible measure of message redundancy could be a value R =

log2(n)−H.

7.4 Approaches to Entropy Coding

There exist various approaches to the problem of prediction of unknown incoming

characters in an encoded message. They are based on statistical modelling and can

be classified to three groups proportionaly to their performance and increasing cal-

culation expense:

• static coding assumes that an input message has a fixed probability distribu-

tion without any analysis of the message. This probability is not being changed

(is static) during encoding. This method reaches the worst compression ratios.

• semi-adaptive coding is a two pass method, where in the first pass proba-

bility distribution of the message is gathered, in the second pass the message

is encoded with respect to this distribution. It is needed to save the gathered

probability distribution in order to decode the message.

• adaptive coding changes the prediction model while the message is being

encoded in the way that the model is updated after encoding of each character.
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This is the most efficient approach in terms of compression, but also the most

computationally expensive.

7.5 Shannon–Fano Coding

The Shannon–Fano coding is based on a binary tree tracing, where fixed bit sized

codes are emitted by encoder based on the position of a particular character within

the tree. It specifies how to construct such a tree from a known statistics of characters

occurence from a message in order to emit nearly optimal bit–sized codes. It con-

structs the binary tree in a way that it splits the incoming set of characters into two

halves with approximatelly 0.5 probability of occurence each. A tree node is created

a) message statistics and codes b) Shannon–Fano tree

character n P code total bits
1 6 0.3750 00 12
a 4 0.2500 10 8
b 1 0.0625 1100 4
6 1 0.0625 1101 4
c 2 0.1250 01 4
d 1 0.0625 1110 4
4 1 0.0625 1111 4∑

16 1.0000 n/a 40

Table 7.4: Shannon–Fano coding demonstration of message “1a1b6a1c1d4a1c1a”.

above such a split. The two sets are lately decomposed in the same way up to only

one character remains. Then the creation of binary tree is completed. The construc-

tion of bit codes assigned to each character is done in the way that we define that

we move from top to left in the tree when ‘0’ and to right when ‘1’ is emitted. This

design assigns less sized codes to the most probable characters in the message and

wider for less probable ones. This is why it achieves compression, because the most of

messages have significantly different distribution than uniform. We can see from the
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table 7.5 that the example message was encoded to 40 bits (5 bytes), but distribution

of the characters must be known to the decoder to reconstruct the message in order

to let it create the decoding tree.

7.6 Huffman Coding

Huffman coding is very similar to Shannon–Fano coding in the way that the output

from the encoder are integer–sized bit sequences for each character to be encoded.

The principal difference is that it uses a different method of binary tree construction.

At the beginning it sorts all characters in order of occurence. Then it merges two

characters of the smallest occurence what forms a Huffman tree node and a new

character. In the next passes the process is repeated up to the top of the tree, i.e.

a) message statistics and codes b) Huffman tree

character n P code total bits
1 6 0.3750 1 6
a 4 0.2500 01 8
b 1 0.0625 00010 5
6 1 0.0625 00011 5
c 2 0.1250 001 6
d 1 0.0625 00000 5
4 1 0.0625 00001 5∑

16 1.0000 n/a 40

Table 7.5: Huffman coding demonstration of message “1a1b6a1c1d4a1c1a”.

when only two characters are remaining. Then the tree is complete and codes can

be generated by moving in the Huffman tree by two bit values either to left or right

respectively.
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tree level characters/counts
6. 1 a c b 6 d 4

6 4 2 1 1 1 1
5. 1 a c d4 b 6

6 4 2 2 1 1
4. 1 a c d4 b6

6 4 2 2 2
3. 1 a d4b6 c

6 4 4 2
2. 1 d4b6c a

6 6 4
1. d4b6ca 1

10 6

Table 7.6: Connection of characters to form nodes in Huffman tree.

7.7 Arithmetic Coding

The basic principle of arithmetic coding is that an interval I = 〈0, 1) is decomposed to

subintervals proportional to a probability of each character in the message. For each

character cn in the message we will reduce range of I to interval I = 〈In, In+1), where

In position is defined by the model cummulative histogram. Now the model can be

eventually updated and the interval I is further decomposed to a smaller intervals

proportional to the model. This is done for all the characters in the message. At the

end of encoding we have some result interval IN . The output of arithmetic coder is

a smallest binary number, scaled to the original interval 〈0, 1), whose value belongs

to the interval IN .

7.7.1 Semi–Adaptive Arithmetic Coding Demonstration

To demonstrate the algorithm itself we will use semi–adaptive arithmetic encoding of

message M =“abaca”. If we gather a statistics of each character, we see that Pa = 3
5
,

Pb = 1
5
, Pc = 1

5
. Then we set left Ln and right Rn probability limits to L0 = 0,

R0 = 1, so that interval 〈L0, R0) will be further decomposed while encoding n–th

character of the message. Before encoding we decompose the interval to subintervals
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proportional to probability of characters, so for Ia = 〈ILa , IRa ) = 〈0, 3
5
), Ib = 〈3

5
, 4

5
),

Ic = 〈3
5
, 1). When the first character c0 is encoded, the starting interval 〈L0, R0)

is shortened to Ic0 = 〈L1, R1), which is then successively decomposed as the next

characters are encoded.

n cn Ln Rn δn = Rn − Ln ILcn IRcn Ln+1 = Ln + δnI
L
cn Rn+1 = Ln + δnI

R
cn

0 a 0 1 1 0 3
5 0 3

5
1 b 0 3

5
3
5

3
5

4
5

9
25

12
25

2 a 9
25

12
25

3
25 0 3

5
9
25

54
154

3 c 9
25

54
125

9
125

4
5 1 261

625
54
125

4 a 261
625

54
125

9
625 0 3

5
261
625

1332
3125

Table 7.7: Example of semi–adaptive arithmetic coding of message “abaca”.

We can see that the final interval calculated from table 7.7 is 〈261
625
, 1332

3125
). For the

semi–adaptive coding holds:
N−1∏
n=0

Pcn = δN ,

thus the size of this interval is

PaPbPaPcPa =
3

5

1

5

3

5

1

5

3

5
= δ5 =

1332

3125
− 261

625
=

27

3125
.

We are able to reconstruct the original message from a sole knowledge of the interval

〈L5, R5). We now need to encode the interval to a binary form. A single binary

number that belongs to this interval is sufficient for the lossless reconstruction. So

the problem is to find a binary number B:

B
2k
∈ 〈LN , RN), (7.9)

such that the k is minimal, i.e. B has to have the smallest possible number of bits to

fit in 〈LN , RN). This criterion ensures reaching maximal compression for the semi–

adaptive scheme. The encoding and finding B is shown in fig. 7.1.

So we encoded the message “abaca” to the number B = 27, i.e. to the 6–bit sequence

011011. The k = 6 is the minimal number of bits to encode the message because

there would be no number to fit in 〈LN , RN) if we make the scale in fig. 7.1 less dense.
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Figure 7.1: Graphical illustration of arithmetic coding.

So we reached the mean number of bits per character, entropy H(“abaca”) = 1.2 bits.

Note that it is needed to know the probability distribution in order to reconstruct

the message.

7.7.2 Adaptive Arithmetic Coding

Up to a recent time the usage of most efficient adaptive arithmetic coding was con-

sidered unpractical because of its high computational expense. This is because for

every encoded character we have to do O(N) operations to update our prediction

model. This is not true any more as O(logN) algorithm is presented here. Even

if this metod was originally designed, it was found that a similar method has been

already published in [9].

7.7.3 O(logN) Algorithm for Cummulative Histogram Up-

dating

It is quite intuitive that for calculation of cummulative histogram c(x) of histogram

h(x), which describes probability distribution of N character alphabet message is

O(N), because it is needed to sum all the probabilities present in h(x). It can

be simplified to binary tree tracing problem. Let us have a binary tree Tl(x), l ∈
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{0, 1, ...L}, x = {0, 1, ...X}, which has L = log2N levels and at each level X = 2l+1

nodes, this is shown for N = 8 in the table 7.8. If we put the whole h(x) to the

T0(0) |T0(1)
T1(0) |T1(1) |T1(2) |T1(3)
T2(0) |T2(1) |T2(2) |T2(3) |T2(4) |T2(5) |T2(6) |T2(7)

Table 7.8: The form of N = 8 binary tree used for cummulative histogram calculation.

highest level of T , then we can calculate successive additions at higher levels of T as:

Tl(x) = Tl+1(2x) + Tl+1(2x+ 1), ∀x ∈ {0, 1, ...2l+1 − 1},∀l ∈ {L− 2, L− 3, ...0},

then the value of cummulative histogram for example for c(5) = T0(0) + T2(4). In

general the total number of additions in worst case is equal to log2N , thus the com-

plexity of the algorithm was reduced to O(logN), what is the significant speed boost

which makes adaptive arithmetic coding practical.

7.7.4 Finite Context Prediction

A smart approach can be used to yet improve the adaptive arithmetic encoding scheme

to result in even better results than predicted by Shannon’s entropy (7.7), but in agree

with (7.8). The idea is in exploiting the nature of adaptive arithmetic coding, where

the prediction model is updated after encoding of each character of a message. The

point is that a better prediction during encoding can be made if a model, which pre-

dicts the next character in message to be encoded is not based on statistics from all

the encoded characters but only on a statistics of a few characters close to encoding

position (a finite context) in message. This is because there can be found contexts

within a message that have different distribution that the message as the whole. Un-

fortunately a prediction of optimal finite context2 size is difficult to find in a straight

way, so iterative algorithms are used. In fig. 7.2 can be seen results of encoding

fig. 7.4, considered as message of 220 = 1048576 characters of 135 stated alphabet,

where the optimal context size is 4096 characters to reach minimal H = 3.387b.

2Also called a finite window.
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7.8 Lossless Compression Algorithm Proposal

The proposed algorithm for lossless image compression is based on Burrows-Wheeler

block-sorting algorithm [1], [10], hierarchycal RLE coding (sec. 7.1.4) and adaptive

arithmetic coding (sec. 7.7) with finite context prediction.

Figure 7.3: Scheme of the proposed compression algorithm.

The characters within a message are first reordered using the BWT to gather

characters of similar contexts close together. Then the message is separated to blocks

of specified size. Then for each block a histogram bitmap is calculated to reduce

message alphabet states in the block passed to the entropy coder. The histogram

bitmaps are encoded by the hierarchycal RLE encoding. Multiple iteration passes are

then performed in order to find an optimal size of context to compress the message



81

to a minimal size. The context starts at size of 256 characters and is doubled in each

iteration up to 16384 characters. Usual range for the optimal context size is 1024 up

to 8192 characters. The reason for doubling the context size is time expense of the

compression. It could be found in a precission up to one character. The compression

software supports up to 16bit per letter characters in a message. The purpose of

the hierarchycal RLE coding in the compression scheme in table 7.3 is that for 16-bit

characters we have to store histogram bitmap for 65536 characters, what is the bitmap

of size 8192 bytes what is frequently reduced below 1/100 of its original size. In case

of 8-bit characters in message, the histogram size is mostly halved. A comparison

of effectivity of the proposed algorithm and other commercial and non-commercial

lossless compression formats can be seen from table 7.9.

Name File size [B] Entropy [b] Algorithm
GIF 700 206 5.342 LZW

TIFF 621 772 4.743 LZ77
GNU zip v1.3.3 608 016 4.638 LZ77

UNIX compress v4.2.4 604 225 4.609 LZW
RAR v3.3 beta 1 566 518 4.322 unknown

PNG 542 779 4.141 LZ77
bzip2 v1.0.2 470 925 3.592 BWT, Huffman

proposed algorithm 427 934 3.265 BWT, Arit.

Table 7.9: Results and comparison of the proposed compression algorithm.
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Figure 7.4: Sample 1024× 1024 grayscale image used for compression.

7.9 Achievements and Original Contributions

This section is added to comprehensively summarize what was done originally in what

chapter to make an evaluation easier for oponents. These areas are summarized in

the following list.

• chapter 1, section 1.8: Algorithm of black body color calculation at various

temperatures was created and implemented, based on integration of spectral

colors derived from the CIE diagram and Planck black body irradiation in the

visible spectrum.

• chapter 2, section 2.2: Signal sample arithmetics is described from the lowest

level point of view in order to make a slight insight to how a digital signal is

actually handled by a computer what should demystify many things to non-

programming scientists and theoreticians.

• chapter 2, section 2.4: Various types of discrete convolution are described

with wide range of applications, particularly non–cyclic convolution ones.
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• chapter 2, section 2.4.5: A new adaptive kernel convolution method was

developed for a purpose of noise, bad pixel detection and filtration from ortho–

elevation surface maps. This method was developed for TU Wien, dept. of

Geography for filtering MOLA mars elevation maps also with an interactive

software.

• chapter 3, sections 3.1.1, 3.1.2, 3.1.3: Original comprehesive implementa-

tions of both DIT and DIF FFT algorithms and optimized bit reversal routines

are presented there.

• chapter 3, section 3.2.2: Original software based on phase correlation tech-

niques for shift detection of slices in volume rendering was implemented and

used to correct slices acquired from the Visible Human Project to make the

data actually usable for volume rendering.

• chapter 4: An introduction to one and two dimensional wavelet analysis is

presented here with particular aim to comprehense. Original software was im-

plemented for searching all possible 4–tap filters forming a wavelet base for

a given coefficient quantization, what is presented in table 4.1 for 4–bit and in

appendix for 7–bit coefficient quantization.

• chapter 5: This chapter is written originally from scratch in order to describe

how raycasting volume rendering is implemented. It can be shown on interactive

volume rendering software that was implemented. Some sample renderings are

shown in appendix.

• chapter 6: Introduction to decorrelating transforms is presented here again

with particular aim to comprehense. Optimal decorrelating basis vetors are

shown for a sample image calculated by self-implemented software and are then

compared with other decorrelating transforms, where similarity of basis vectors

can be compared also visually. Then the proposed DCT based progressive lossy

compression software is described.
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• chapter 7: Originally written guide to lossless compression methods is pre-

sented here, new are approaches to RLE encoding and arithmetic entropy cod-

ing. It demonstrates the methods on particular examples which are to be easily

generalized by reader to avoid a need to study hard theory behind these meth-

ods. The original lossless compression software design is then presented based on

described compression methods including comparison with other lossless com-

pression codecs.



Appendix

n hk unnormalized hk normalized zeroed MSE
1 +0 + 0− 63− 63 +0.000000 + 0.000000− 0.707107− 0.707107 95.49% 45.17
2 −18 + 10− 35− 63 −0.240149 + 0.133416− 0.466957− 0.840523 92.39% 66.15
3 −35 + 10− 18− 63 −0.466957 + 0.133416− 0.240149− 0.840523 90.02% 77.28
4 −63 + 0 + 0− 63 −0.707107 + 0.000000 + 0.000000− 0.707107 89.12% 81.16
5 −12 + 8− 40− 60 −0.163178 + 0.108786− 0.543928− 0.815892 93.40% 60.38
6 −15 + 9− 36− 60 −0.207973 + 0.124784− 0.499134− 0.831890 92.82% 64.01
7 −20 + 10− 30− 60 −0.282843 + 0.141421− 0.424264− 0.848528 91.85% 68.87
8 −30 + 10− 20− 60 −0.424264 + 0.141421− 0.282843− 0.848528 90.34% 75.58
9 −36 + 9− 15− 60 −0.499134 + 0.124784− 0.207973− 0.831890 89.83% 78.50
10 −40 + 8− 12− 60 −0.543928 + 0.108786− 0.163178− 0.815892 89.56% 79.54
11 −8 + 6− 42− 56 −0.113137 + 0.084853− 0.593970− 0.791960 94.04% 55.90
12 −42 + 6− 8− 56 −0.593970 + 0.084853− 0.113137− 0.791960 89.36% 80.69
13 −5 + 4− 36− 45 −0.086233 + 0.068986− 0.620874− 0.776093 94.39% 53.43
14 −36 + 4− 5− 45 −0.620874 + 0.068986− 0.086233− 0.776093 89.26% 80.93
15 +6− 8− 56− 42 +0.084853− 0.113137− 0.791960− 0.593970 96.22% 38.35
16 −7 + 5− 30− 42 −0.133777 + 0.095555− 0.573330− 0.802662 93.77% 57.75
17 −30 + 5− 7− 42 −0.573330 + 0.095555− 0.133777− 0.802662 89.42% 80.12
18 −56− 8 + 6− 42 −0.791960− 0.113137 + 0.084853− 0.593970 89.35% 80.28
19 +8− 12− 60− 40 +0.108786− 0.163178− 0.815892− 0.543928 96.38% 36.98
20 −60− 12 + 8− 40 −0.815892− 0.163178 + 0.108786− 0.543928 89.55% 79.21
21 +9− 15− 60− 36 +0.124784− 0.207973− 0.831890− 0.499134 96.38% 36.18
22 +4− 5− 45− 36 +0.068986− 0.086233− 0.776093− 0.620874 96.08% 39.29
23 −45− 5 + 4− 36 −0.776093− 0.086233 + 0.068986− 0.620874 89.29% 80.85

Table 7.10: 4–tap hk filters generating orthogonal wavelet bases for 7–bit coefficient
quantization calculated from 268 435 456 possible candidates, part I.
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n hk unnormalized hk normalized zeroed MSE
24 −60− 15 + 9− 36 −0.831890− 0.207973 + 0.124784− 0.499134 89.82% 78.15
25 +10− 18− 63− 35 +0.133416− 0.240149− 0.840523− 0.466957 96.36% 36.37
26 −14 + 6− 15− 35 −0.341362 + 0.146298− 0.365745− 0.853405 91.18% 72.20
27 −15 + 6− 14− 35 −0.365745 + 0.146298− 0.341362− 0.853405 90.89% 73.15
28 −63− 18 + 10− 35 −0.840523− 0.240149 + 0.133416− 0.466957 90.05% 77.20
29 +10− 20− 60− 30 +0.141421− 0.282843− 0.848528− 0.424264 96.31% 37.03
30 +5− 7− 42− 30 +0.095555− 0.133777− 0.802662− 0.573330 96.28% 37.49
31 −42− 7 + 5− 30 −0.802662− 0.133777 + 0.095555− 0.573330 89.40% 79.66
32 −60− 20 + 10− 30 −0.848528− 0.282843 + 0.141421− 0.424264 90.42% 75.81
33 +10− 30− 60− 20 +0.141421− 0.424264− 0.848528− 0.282843 96.01% 41.11
34 −60− 30 + 10− 20 −0.848528− 0.424264 + 0.141421− 0.282843 91.93% 68.89
35 +10− 35− 63− 18 +0.133416− 0.466957− 0.840523− 0.240149 95.90% 42.26
36 −63− 35 + 10− 18 −0.840523− 0.466957 + 0.133416− 0.240149 92.47% 66.09
37 +9− 36− 60− 15 +0.124784− 0.499134− 0.831890− 0.207973 95.78% 42.74
38 +6− 14− 35− 15 +0.146298− 0.341362− 0.853405− 0.365745 96.20% 38.51
39 −35− 14 + 6− 15 −0.853405− 0.341362 + 0.146298− 0.365745 90.98% 73.35
40 −60− 36 + 9− 15 −0.831890− 0.499134 + 0.124784− 0.207973 92.89% 63.71
41 +6− 15− 35− 14 +0.146298− 0.365745− 0.853405− 0.341362 96.14% 39.31
42 −35− 15 + 6− 14 −0.853405− 0.365745 + 0.146298− 0.341362 91.25% 72.23
43 +8− 40− 60− 12 +0.108786− 0.543928− 0.815892− 0.163178 95.65% 43.61
44 −60− 40 + 8− 12 −0.815892− 0.543928 + 0.108786− 0.163178 93.46% 59.93
45 +35 + 63 + 18− 10 +0.466957 + 0.840523 + 0.240149− 0.133416 96.43% 36.10
46 +30 + 60 + 20− 10 +0.424264 + 0.848528 + 0.282843− 0.141421 96.36% 36.84

Table 7.11: 4–tap hk filters generating orthogonal wavelet bases for 7–bit coefficient
quantization calculated from 268 435 456 possible candidates, part II.
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n hk unnormalized hk normalized zeroed MSE
47 +20 + 60 + 30− 10 +0.282843 + 0.848528 + 0.424264− 0.141421 95.97% 40.95
48 +18 + 63 + 35− 10 +0.240149 + 0.840523 + 0.466957− 0.133416 95.83% 42.04
49 +36 + 60 + 15− 9 +0.499134 + 0.831890 + 0.207973− 0.124784 96.48% 36.22
50 +15 + 60 + 36− 9 +0.207973 + 0.831890 + 0.499134− 0.124784 95.74% 42.78
51 +6− 42− 56− 8 +0.084853− 0.593970− 0.791960− 0.113137 95.57% 44.38
52 −56− 42 + 6− 8 −0.791960− 0.593970 + 0.084853− 0.113137 94.09% 55.31
53 +40 + 60 + 12− 8 +0.543928 + 0.815892 + 0.163178− 0.108786 96.45% 36.73
54 +12 + 60 + 40− 8 +0.163178 + 0.815892 + 0.543928− 0.108786 95.65% 43.97
55 +5− 30− 42− 7 +0.095555− 0.573330− 0.802662− 0.133777 95.61% 44.13
56 −42− 30 + 5− 7 −0.802662− 0.573330 + 0.095555− 0.133777 93.84% 57.29
57 +42 + 56 + 8− 6 +0.593970 + 0.791960 + 0.113137− 0.084853 96.32% 38.44
58 +15 + 35 + 14− 6 +0.365745 + 0.853405 + 0.341362− 0.146298 96.21% 38.49
59 +14 + 35 + 15− 6 +0.341362 + 0.853405 + 0.365745− 0.146298 96.13% 39.13
60 +8 + 56 + 42− 6 +0.113137 + 0.791960 + 0.593970− 0.084853 95.56% 44.94
61 +4− 36− 45− 5 +0.068986− 0.620874− 0.776093− 0.086233 95.59% 45.10
62 −45− 36 + 4− 5 −0.776093− 0.620874 + 0.068986− 0.086233 94.42% 52.73
63 +30 + 42 + 7− 5 +0.573330 + 0.802662 + 0.133777− 0.095555 96.39% 37.69
64 +7 + 42 + 30− 5 +0.133777 + 0.802662 + 0.573330− 0.095555 95.60% 44.61
65 +36 + 45 + 5− 4 +0.620874 + 0.776093 + 0.086233− 0.068986 96.18% 39.53
66 +5 + 45 + 36− 4 +0.086233 + 0.776093 + 0.620874− 0.068986 95.52% 45.04
67 +0− 63− 63 + 0 +0.000000− 0.707107− 0.707107 + 0.000000 95.47% 45.25
68 −63− 63 + 0 + 0 −0.707107− 0.707107 + 0.000000 + 0.000000 95.51% 44.85

Table 7.12: 4–tap hk filters generating orthogonal wavelet bases for 7–bit coefficient
quantization calculated from 268 435 456 possible candidates, part III.
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a) cross section in eyes area b) face of the cadaver

c) cadaver viewed from profile d) nose hollow and ear area

e) photography of Joseph Paul Jernigan f) area with cervical, pith and vocal chord

Figure 7.5: Application to the Visible Human Project.
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[11] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge University

Press, 1992.

[12] Rogers D. F. Procedural Elements for Computer Graphics. McGraw-Hill Book

Company, New York, 1985.

[13] Shannon C. E., Weaver W. The Mathematical Theory of Communication.

The University of Illinois Press, Urbana, 1964.

[14] Smith S. W. The Sciencist and Engineer’s Guide to Digital Signal Processing.

California Technical Publishing, P.O. Box 502407, San Diego, CA 92150-2407,

1999.

[15] Uytterhoeven G. Wavelets: Software and Application. Katholieke Uni-

versiteit Lueven, Faculteit Toegepaste Wetenschappen Arenbergkasteel, B-3001

Haverlee, Belgium, 1999.

[16] Wallace G. K. The JPEG still picture compression standard. Communications

of the ACM, 1991.

[17] Ziv, Lempel. A universal algorithm for sequential data compression, vol. 23.

IEEE Transactions in Information Theory, 1977.

[18] Ziv, Lempel. Compression of individual sequences via variable-rate coding,

vol. 24. IEEE Transactions in Information Theory, 1978.


