
Hacking the Linux automounter

Current Limitations and Future Directions

Ian M. Kent Jeffrey E. Moyer

Abstract

The IT industry is experiencing a a considerable shift
from proprietary operating systems to Linux. As a
result, the features and functionality that customers
have come to expect of these systems now must be
provided for on Linux.

Many large scale enterprise deployments include
an automounter implementation. The automounter
provides a mechanism for automatically mounting
file systems upon access, and umounting them when
they are no longer referenced. It turns out that the
Linux automounter is not feature-complete. And
there are cases where Linux is just plain incompati-
ble with the implementations from other proprietary
vendors.

This paper looks at the common problems in large-
scale Linux autofs deployments, and offers solutions
to these problems.

In order to solve the current automounter limita-
tions, we must start with an understanding of how
things work today. To this end, we will explain
some basic information about the automounter, such
as how to configure an autofs client machine. We
will walk through the code for basic operations, such
as the mounting, or lookup, of a directory and the
umounting, or expiry, of a directory. We will also
look at where autofs fits into the VFS layer.

With a picture of the landscape in place, we will
address major issues facing customer deployments.
Currently, there are two principle pain points. The
first is that the Linux automounter implements di-
rect maps in a way that is incompatible with that of
every other implementation. We will discuss the de-
sired behavior and compare it with that of the Linux
automounter. We will then look at ways to overcome
this incompatibility by extending the autofs kernel
interface.

The second major pain point surrounds the use of
multi-mount entries for the /net, or -hosts maps.

Because of the nature of multi-mount maps, the
Linux implementation mounts and umounts these
directory hierarchies as a single unit. This means
that clients mounting several big filers can experi-
ence resource starvation, causing failed mounts. We
will look at this problem from several different levels.
We’ll start at the root of the problem and show how
the kernel, glibc, and automount can be modified to
address the issue.

We will conclude with future directions for the au-
tomounter.

1 Introduction

With even a modest amount of information, network
clients often need many mount entries in their tables
to make the organization’s information available. To
make matters worse, the mount tables often change.
The administrative overhead is not workable. This
leads to heavy use of an automounter in many enter-
prises.

An automounter provides the ability to manage
mount tables centrally, automatically mounting en-
tries on demand and umounting them after a prede-
fined period of inactivity. In addition to the reduc-
tion in administrative overhead, an automounter pro-
vides a dramatic reduction in the resources needed
to have a significant number of file systems avail-
able on demand from an arbitrary number of network
servers.

Many enterprises are adopting Linux as client
workstations and server platforms, which has con-
siderably increased the use of the Linux automounter
in the past 2 years. As a result, bugs are identified
and deficiencies are pointed out. Most importantly,
places where the Linux implementation differs from
that of industry standard implementations have be-
come a significant issue. The most commonly raised
discrepancies are:

• The Linux automounter implements direct maps
quite differently from the industry standard.

• Multi-mount maps are mounted and umounted
as a single unit.

• Browsable maps are not the default.

• The Linux automounter does not support in-
cluded maps

• The Linux automounter does not support the
-null map.

• The Linux automounter does not consult
/etc/nsswitch.conf as it should for determin-
ing the source of an automount map.

Each of these issues causes problems in mixed en-
vironments, where Linux automount clients share the
same maps with other vendor implementations, typi-
cally provided by a NIS server. They also cause prob-
lems in migrations to Linux from proprietary Unix
platforms, where maps must be changed to either do
things the Linux way, or work around the limitations
of the Linux automounter. We will discuss these is-
sues and others in section 4 .

2 Unix automounter

Every commercial Unix platform has an automounter
implementation with a standard set of features. The
most well known implementation is the one found in
SunTMSolarisTM. It has set the standard for what to
expect in an automounter.

2.1 The master map

An automount configuration consists of a master map
describing the mount tables it manages. It is gener-
ally located in the /etc directory and is called either
auto.master or auto master. It consists of a line
for each automount managed mount point, formated
as follows:

mount-point map-name [mount-options]

mount-point

mount-point is the full path of the directory of
the mount point. If the directory does not exist,
it is created. The exception to this convention
is that the entry may begin with a plus (+) fol-
lowed by a map-name, which causes the specified
map to be included from its source as if it were
itself present in the master map.

map-name

map-name is the name of the map containing the
mount table. If it begins with a slash (/), it is
interpreted as a local file name. Otherwise, the
name service switch configuration is used to lo-
cate the source of the map. This can also be one
of the special maps: -hosts used to mount ex-
ports from hosts on the network, or -null used
to mark a mount-point to be excluded when
parsing subsequent master map entries.

mount-options

mount-options is an optional comma-separated
list of mount options to be applied to the entries
in the map unless entries in the map specify their
own options.

Lines beginning with a # are comments and are
ignored. Long lines may be broken by quoting the
new line character with a backslash, as is common
practice in configuration files.

The special mount point /- is reserved to indicate
that the map is a direct mount map and is not asso-
ciated with any specific top-level directory.

2.2 Mount maps

Mount maps consist of two types – indirect and direct
– and have the following basic format:

key [mount-options] location

key

key is the name used to look up mount table
entries in the map. For indirect mount entries,
this is the name of the directory upon which the
mount will be made. For direct mount entries,
this is the full path leading to the directory upon
which the mount will be made.

mount-options

mount-options is an optional comma-separated
list of mount options to be applied to the map
entry.

location

location specifies the file system that is to be
mounted on key. It can be a single file system
or a number of file systems to select from using
availability and proximity metrics. It may also
consist of multiple key [mount-options] location
offsets that each must start with a slash (/). If
the first offset is /, then it is optional. These off-
set mount entries are referred to as multi-mount
entries in Linux autofs.

There are a number of standard macro substitu-
tions available for use in location specifications. They
are commonly used in multiple architecture environ-
ments. A description of those normally available can
be found in [2] on page 190. For those understood
by Linux autofs, see autofs(5).

As in the master map, lines beginning with a #
are comments and are ignored, and long lines may
be broken by quoting the new line character with a
backslash.

A map key of * denotes a wild-card entry. This
entry is consulted if the specified key does not exist
in the map. A typical wild-card entry looks like this:

* server:/export/home/&

The special character & will be replaced by the
provided key. So, in the example above, a
lookup for the key foo would yield a mount of
server:/export/home/foo.

The timeout on mounts points defaults to ten min-
utes and can be changed using a command line option
when the service is started.

3 Linux automounter - autofs

The Linux automounter differs in relatively few ways
from traditional Unix automounter implementations.
In fact, all of the information provided in the last sec-
tions regarding configuration data apply to the Linux
automounter as well. This section begins with a de-
scription of the Linux-specific details of the master
map, and then moves on to the architecture of the
Linux automounter.

3.1 Linux autofs master map

The Linux autofs master map syntax is a super set of
the standard automount master map syntax. This is
partly because Linux autofs does not utilise the name
service switch to locate the source of maps and so
must allow it to be specified.

The syntax is:

mount-point [maptype:]map-name [mount-options]

The fields above are the same as those described in
section 2.1 (“The master map”), except for the
maptype, which can be one of file, program, yp,
nisplus, hesoid or ldap. The daemon supports the
specification of a map format within the maptype
parameter. It can be sun or hesoid, but the init
script doesn’t cater for it. The default format is sun,
and it is a subset of the standard sun automount
map format. Linux autofs understands much of this

map format, and when a full implementation of di-
rect mounts is added, the only things missing will be
special maps such as the -hosts and -null.

3.2 Architecture

The automounter is implemented in two main parts:
a user-space daemon, which is responsible for pars-
ing map options and issuing mount and umount com-
mands, and a filesystem, implemented in the kernel.
The daemon is further broken up into the daemon
proper and a set of loadable modules. To understand
how the daemon operates, we will walk through the
daemon startup for a minimal setup.

Consider the following auto.master map:

/net /etc/auto.net

We will not show the contents of the program map,
auto.net, as it is shipped with autofs. Autofs
startup begins with the init script. This script parses
the auto.master map and spawns one automount
daemon for each mount point listed. The example
given above will result in an automount command
with the following parameters:

/usr/sbin/automount /net program /etc/auto.net

As shown above, the daemon takes as its options a
mount point, the type of the map to be loaded, and
the name of the map to be loaded.

Now we will look at the loadable modules. There
are three types of modules: lookup, parse, and
mount. Lookup modules are used to look up a given
key in a map. The lookup module has code that un-
derstands how to get information from a map source.
For example, lookup file.so is able to read in entries
from a file map. Map entries are stored as a key
value pair. The key, as noted above, corresponds
to a directory. The parse module is then responsi-
ble for parsing the value part of the key value pair.
Finally, the mount module takes care of doing the ac-
tual mounting. This module has to know how to pass
arguments on to the mount command. In the case
of NFS, this module is also responsible for parsing
replicated server entries.

Returning to the example above, the daemon
knows that it needs to load the lookup program mod-
ule, since the program map type was specified in the
command line. It calls the module’s lookup init rou-
tine, passing a map format (or none, in this case),
and all arguments that the daemon itself did not pro-
cess. These leftover arguments are considered to be
map arguments.

The lookup module will perform its initialization
and hand a context pointer back to the caller. Before

returning, though, it loads the parse module, calling
its parse init function. It then passes the map format
down, as well as any options it did not handle. The
parse module will load the mount nfs module, if it
hasn’t already been loaded. This module is always
loaded, since the primary file system type mounted
via autofs has historically been NFS.

3.3 Multi-mounts

Multi-mount entries allow the user to specify a direc-
tory hierarchy that will be mounted. For example:

mydir -rw \

/ server:/export/mydir \

/src server2:/export/home/mydir/src \

/tmp :/usr/tmp

This example demonstrates how to cobble together a
single directory structure from multiple servers. One
point to note here is that the mydir directory con-
tains both an NFS-mounted file system, and mount
points beneath it.

Currently, when any directory in this hierarchy is
accessed, the automount daemon mounts every entry
in the directory hierarchy. The expiry of a multi-
mount entry also happens atomically.

This is the mechanism used to implement -hosts.
The program map auto.net generates multi-mount
entries on the fly, and the daemon mounts them when
/net/<servername> is accessed. The <servername>
is used as the key.

3.4 VFS interface

To understand the kernel interface used by autofs,
it is necessary to know a little about the Virtual
Filesystem Switch (VFS). The VFS is a software
layer that handles all system calls related to standard
Unix file systems. It does this by defining several
data structures that contain information about the
file system and objects that provide callback func-
tions. The VFS uses the callback functions to carry
out standard file system operations. The primary
objects are the superblock, the inode, the dentry, and
the file object. For the interested reader, a descrip-
tion of the VFS, its data structures, and the opera-
tions they define can be found in chapter 12 of [7].

The dentry object represents a single component
of a directory path. One of the main functions of
the VFS is to resolve a given file system path to its
dentry by walking each of its path components.

The VFS kernel interface of autofs is conceptu-
ally straightforward. The automount functionality
is provided largely in the inode operation lookup to

lookup a new dentry, the dentry operation revalidate
to revalidate an existing dentry, the file operation
readdir to read a dentry directory, and with a file
system specific ioctl to check for dentrys that have
not been used for a given timeout.

The bulk of the work done in autofs is the mount-
ing and expiring of file systems.

3.4.1 Mount lookup

Mount requests are triggered when commands or
functions such as a cd, ls, or open cause the VFS
to walk a directory path within the autofs file sys-
tem. This in turn calls the autofs4 function lookup
if the directory doesn’t exist, or revalidate if it does.
Within these functions there are two ways autofs can
decide whether a mount needs to be triggered. First,
if the directory doesn’t exist, then lookup creates a
negative dentry and passes it to the revalidate func-
tion. Revalidate knows that a mount needs to be
requested when it sees a negative dentry, so it sends
a mount request packet to the automount daemon.
The daemon then issues a mount command and re-
turns a status when done. For the second case, when
the directory exists, the revalidate function is called
and decides whether a mount request needs to be sent
by checking whether the dentry is an empty directory
and not already a mount point. If this is the case,
then a mount request packet is sent to the daemon.
This process is shown in figure 1 .

automount

VFS

process
User

cd /home/raven

link_path_walk

autofs4
module

lookup,
revalidate or
readdir

request
mount

packet

Kernel space
User space

mount

Figure 1: autofs mount lookup

3.4.2 Mount expiry

Expiration of mounts is achieved by calling the autofs
expire ioctl. The autofs daemon does this when it
receives an alarm signal, which has a frequency of one
quarter of the mount timeout. The daemon looks for
mounted file systems under the path on which it is

mounted and asks the autofs kernel module whether
it can expire them. If the kernel module decides that
the daemon can expire a mounted dentry, then it
sends an expire request packet to the daemon, which
in turn issues an umount command and returns a
status when done, as shown in figure 2 .

expire
request
packet

automount

autofs4
module

automount

VFS ioctl
pass

expiry
check dentry

Kernel space
User space

umount expire ioctl

Figure 2: autofs mount expiry

4 Limitations

4.1 Master map semantics

Linux autofs starts instances of automount from its
init script by reading a master map and parsing its
contents. This is not really the right place to perform
this task, so it’s not surprising that there are a couple
of things that the init script doesn’t do.

First, if there are multiple instances of a key,
it is expected that the corresponding maps will be
merged. This feature is often used to add local maps
to a given key on a per client basis.

The other thing that the init script, and hence
the master map processing doesn not handle is the
use of the -null map. The -null map is used to
mark a master map mount-point as excluded from
subsequent parsing. It also umounts these entries
during a reload of the master map.

4.2 Included Maps

Another feature expected of an automounter is the
ability to include a map in-line from within another
map using the syntax +mapname. This feature is
supported in both master maps and mount maps.

Linux autofs does not yet know how to do this.
We will briefly discuss this issue in section 6 when
we talk about the new version of autofs.

4.3 Large Number of Mounts

There are 2 issues using a large number of NFS (and
autofs) mounts. The first is the number of devices
available for mounts. The second is reserved port
allocation in the RPC layer.

4.3.1 Anonymous devices

NFS and autofs use the anonymous block device ma-
jor number. In a vanilla 2.4 kernel, this provides a
maximum of 255 devices and hence a maximum of
255 mounts[1]. A commonly used patch provides an
additional 4 unused major device numbers, which in-
crease the number of devices available for mounts to
1280. The kernel-assigned device numbers provide an
additional three major block device numbers for NFS
mounts, but they are not yet used. So the number of
possible mounts could be 2048. However, the limit
on the number of anonymous devices is typically not
reached, due to the port allocation limitation in the
RPC layer (discussion below).

The maximum number of anonymous devices was
substantially increased in the 2.6 kernel[1], and it is
questionable whether effort should be spent resolving
this same problem in the 2.4 kernel given the port
allocation limitation in the RPC layer.

4.3.2 RPC Port Allocation

Many of the RPC based services (mountd, portmap,
NFS, etc.) use a reserved port in the range 1-1024
for their operation. This is done to prevent non-
privileged users from subverting the services.

When a service requests an RPC connection, bind-
ing to a reserved port is the default. The RPC layer
scans ports starting from 800 down until it finds one
that is unallocated. This method would be fine if
RPC were able to multiplex traffic for multiple con-
nections to a server over one or a few sockets. How-
ever, it cannot yet do so.

When a source port is not provided during RPC
connection establishment, the RPC layer will at-
tempt to allocate a reserved port for both UDP and
TCP connections[1]. While this attempt is not so
bad for UDP, it’s terrible for TCP mount requests
because of the lengthy time lag during which the
socket is not available for re-use after being closed.
Using ports outside the privileged port range is possi-
ble only if the exported file system is configured with
the “nosecure” option[4]. A code review is needed to
establish whether other services, such as mountd and
portmap, can be configured to allow insecure ports
for their connections. But of course, using insecure
ports is generally not a good idea.

Autofs and mount also perform RPC probing to
discover whether the target server is available before
performing a mount. This process leads to as many
as nine ports per mount being used during a mount,
which causes rapid exhaustion of reserved port space.
The RPC port allocation algorithm allows for a max-
imum of 800 concurrently mounted file systems when
using UDP.

The situation is somewhat different with TCP. For
each TCP mount attempt, a client uses multiple re-
served ports, and each TCP socket must transition
through the TIME WAIT state to ensure the com-
pletion of the TCP three-way handshake. This pro-
cess ensures that lost duplicates don’t cause errors
on subsequent connections. The TIME WAIT state
is 2*MSL (maximum segment lifetime)[3, Ch 2, Sec
7], which is 60 seconds for the Linux TCP stack. Af-
ter this timeout, these reserved ports are free for use
again.

This leads to a practical limit of around 100 TCP
protocol mounts performed in rapid succession. If
the mounts are performed much more slowly, as is
expected in normal operation, this number is some-
what larger. Nevertheless, it generally falls some-
what short of the theoretical limit of 800 before port
allocation problems appear.

4.4 Handling multi-mounts

Multi-mounts were discussed in section 3.3 . These
map entries must be handled atomically, mounted
and umounted as a single unit. Problems arise when
using the auto.net program map if the servers have
a large number of exports, or if there are a large
number of mount point offsets in a multi-mount en-
try. They must be handled as a single unit due to
possible nesting dependencies within the mount hi-
erarchy.

The anonymous device and reserved port exhaus-
tion described in previous sections are the source of
the problem. We will present a partial solution to
this problem in section 6, where lazy mount/umount
of multi-mount map entries is described. Even with
the planned improvements, though, there is still a
limit on the total number of mounts that can be ac-
tive at any one time due to resource exhaustion. The
only real solution to this problem is multiplexing of
RPC connections.

4.5 Parsing nsswitch.conf

Currently, the Linux automounter does only limited
parsing of the nsswitch.conf file. It is only referenced
when trying to locate the master map during startup.

The script just checks what sources are present in
the automount entry in nsswitch.conf, and looks
for the auto.master map in each location.

There are a couple of reasons for this. First,
all other consumers of the nsswitch.conf file
use the standard glibc interfaces for accessing the
nsswitch.conf file. This interface is not conducive
to the use that automount makes of it. However,
writing another parser for the nsswitch.conf file
format is also not an attractive idea.

The format is described in the nsswitch.conf(5)
man page. It includes basic usage, such as “subsys-
tem: lookup list”. It also contains some more com-
plex usages, such as “subsystem: lookup type [reac-
tion] lookup type”. The general form of reaction is:

’[’ (’!’? STATUS ’=’ ACTION)+ ’]’.

STATUS can be success, notfound, unavail, or trya-
gain. ACTION is either return or continue. Thus,
the following entry will look up a key in NIS, and
it will fail the lookup if it is not found. However,
if the lookup failed because the NIS service was not
available, it will try LDAP:

automount: nis [NOTFOUND=return] ldap

It would be nice to leverage the existing code in
glibc for parsing this file. However, if you embed
the automounter lookup modules in libc, then it be-
comes more difficult to update the lookup modules
themselves. This practice could also introduce a de-
pendency between the version of the installed auto-
mounter and the version of the installed libc package.
Such dependencies are not desirable, and could lead
to an increased overhead and maintenance burden for
the automounter developers. As such, it seems that
the right way to address this problem is to parse the
nsswitch.conf file from the autofs code itself.

5 Direct mount support

Limited direct mount map support was introduced
in autofs version 4.1.

This support is implemented by creating sub-
mounts internally for intermediate path components
and reduces to indirect automount points for the
leaves of the map. If the direct mount map refers to
a mount within an existing file system, then the up-
per levels of that file system will be hidden, because
an autofs file system will be mounted over them.

For example, the direct map

/nfs/apps/geoframe perseus:/local/apps/geoframe

/nfs/apps/tomcat perseus:/local/apps/tomcat

works fine if the directory tree /nfs is devoted to the
direct mount map alone.

But the example

/usr/share/man atlas:/local/${OSNAME}/man

will not work, because /usr will be broken out and
over mounted.

Another limitation of this implementation is that
it can’t deal with single directory direct mounts as
there is no way to turn them into an equivalent in-
direct mount. For example, the following will not
work:

/data filer:/local/data

This is clearly not a good implementation, but
because of the severe limitation on the number of
anonymous devices in the 2.4 kernel, it was decided
to make this compromise to get a limited amount
of functionality. Another consideration is that this
scheme works with a wide range of older kernel mod-
ules and provides adequate functionality for a consid-
erable range of maps found in everyday operation.

The limitations outlined here have all been re-
solved with the rework of direct mounts described
in Section 6 .

6 Autofs Version 5

Work is well underway to resolve a number of the
limitations described above. In order to implement
the new functionality in a clean and sensible way,
it has been necessary to increment the kernel pro-
tocol version to 5.00. It seemed sensible then, to
avoid confusion, to increment the version of the user
space daemon to 5.0.0 as well. Given the decision to
increment the major version, it follows that the de-
velopment priority should be to implement missing
functionality rather than attempt to retain compat-
ibility with older versions of autofs. Hence, much of
the new functionality will work only with version 5.00
of the kernel module. At this stage, existing indirect
mount maps should continue to work as in previous
versions.

6.1 Direct mount implementation

The first and most important task is to implement
fully functional direct mounts. This is even more
important because it will pave the way for lazy
mount/umount of multi-mount and host maps.

Two methods are available to do this. The first
is to use file system stacking similar to that found
in wrapfs from the FiST[5] system. Although using
wrapfs from FiST was very compelling, in the end

it was thought it would increase the complexity too
much when compared to the chosen method.

The method that has been used is to treat each di-
rect mount entry as a distinct mount and take advan-
tage of the VFS inode method follow link to trigger
mounts. This method is safe because a directory can-
not be a symbolic link; therefore the method cannot
otherwise be in use. Since the mount point direc-
tories are created in the host file system, the VFS
doesn’t call the autofs lookup, revalidate, or read-
dir methods, allowing the use of the follow link call
(which follows the lookup) to trigger the mount be-
fore walking into the next directory. This implemen-
tation is surprisingly simple but effective.

The changes needed in the daemon are relatively
straightforward as well. A mount option direct has
been added so the kernel module knows it is a direct
mount and can send mount requests at the right time.
An additional entry point has been added to each of
the lookup modules to enumerate a direct map so
that the mount triggers can be set up. This function
is also used to enumerate the map entries to perform
expiration.

The changes in the communication protocol be-
tween the kernel and the daemon also allow a single
process to handle an entire direct map.

One difference comes in the expiry of direct
mounts. Each direct mount that has had a mount
triggered over mounts the direct mount point. Be-
cause of this it is passed over when the kernel walks
the directory path. Therefore the business timeout
can only be updated during an expire run. As a re-
sult, only truly busy mount points (ie. with open
files or a processes working directory) will prevent
expiry. Hopefully this will not be a problem.

Another issue is that because direct mounts are
made on directories within the underlying file system,
additions to direct maps cannot be seen until the
map is reloaded. Deletions and modifications of map
entries are detected as normal.

It is interesting to note that existing industry im-
plementations implement direct mounts in a similar
way.

6.2 Lazy mount/umount

Lazy mount/umount of multi-mount map entries has
been a difficult problem to solve for some time now.
But with the direct mount changes above, we can
clearly see how it can be done.

The basic problem to be solved is that of nested
mounts. Let’s revisit the example of section 3.3 on
multi-mounts with a couple of small modifications to
demonstrate the problem:

mydir -rw \

/ server:/export/mydir \

/src server2:/export/src \

/src/f77 server2:/export/src/f77 \

/src/c server2:/export/src/c \

/tmp :/usr/tmp

When mydir is accessed, the file system correspond-
ing to the offset / is mounted. But now the file sys-
tem is not necessarily an autofs file system, so we
can never get a callback from the kernel. So autofs
never knows another mount is needed. Therefore, we
must treat the entry as a single unit and mount ev-
erything. Clearly this necessity applies equally when
there is nesting at lower levels in the offsets, such as
the offsets in the src directory.

We can deal with this issue by partitioning the off-
sets and installing direct mount triggers within each
of the file systems. In our example, when mydir is
accessed we mount the entry corresponding to / and
install direct mount triggers for each offset within
the list bounded by nesting points. In this case, we
install direct mounts for /src and /tmp. Similarly,
when one of these mounts is triggered we mount it
and install the corresponding triggers. In the exam-
ple we mount the entry for /src and then install
triggers for /scr/f77 and /src/c and so on.

Expiring these is a little trickier, because for
multi-mounts like these we need to expire the direct
mounts themselves as well as the file systems that
may be mounted on them. This is opposite from
the way the direct mounts described above behave.
To solve this problem, we need a way for the ker-
nel to distinguish multi-mounts from standard direct
mounts. The obvious way to do this is to add an
additional mount option. It is likely to be multi.

The interesting thing about this scenario is that
when a file system is mounted on a trigger that is
perhaps itself nested, it will always be seen as busy
by the expire system because of the file handle for the
communication pipe to the daemon. On the other
hand, a direct mount trigger without such a mount
doesn’t hold open a pipe but creates it at mount time.
So multi-mounts can expire in a natural way without
further complication.

6.3 Host maps

Once the lazy mount/umount has been implemented,
this new technique will resolve many of the the re-
source issues with host maps. It is planned to have
a separate module devoted to handling host maps.
This should amount to little more than enumerating
a local hosts table, enumerating their exports when

they are accessed and treating them as multi-mount
entries as above.

6.4 Initiator utility

Another important issue is the parsing of master
maps in the init script. The init script is clearly not
the right place for parsing a map specification. As
is the case in other industry automount implemen-
tations, parsing should be done in a utility designed
specifically for that purpose.

Another feature that is expected of an auto-
mounter is that when there are multiple entries for
a key in the master map, these entries should be
merged as described in section 2.1 . This can be ac-
complished by using the multi-map support already
present in autofs. Development of this utility will
also provide a way to implement -null map support
in a fairly straightforward way. There will be diffi-
culties with map refresh when part of the multi-map
is busy when a changed map requires it to be nulled.
But otherwise this utility should work fairly well.

The other requirement of this utility is to use the
name service switch to look up map sources. The
code developed from this should be written so as to
be readily usable by the core autofs for the same pur-
pose, thereby solving another of our long-standing
limitations.

6.5 Included map support

Included map support, although important for com-
patibility, has not been worked on yet. Once the work
outlined above is further along this problem will be
tackled. The design is not yet clear, but it will be
along the lines of creating a stack data structure to
“push” the context of the map currently being parsed
so that parsing of an included map can be done. Once
completed, the context of the original map will be
“popped”, allowing parsing of the original map to
continue. We will first see this implemented as part
of the initiator utility described in the previous sec-
tion. The functionality should be able to be applied
to mount maps as well as the master map in a fairly
natural way.

7 Concluding remarks

The astute reader will have noticed that the
above implementation of direct mounts and lazy
mount/umount of multi-mount maps will use a lot
of anonymous devices. This use has become possible
since the limit on the number of these devices was

greatly increased in the early stable release cycle of
the 2.6 kernel. It could be possible for this to func-
tion with a 2.4 kernel, but no work has been done to
estimate the effort to backport the anonymous device
changes. So initially at least, direct mounts will only
be available for 2.6 kernels.

This paper has described a good number of the
challenges in rounding out the Linux automount im-
plementation. We don’t mean to say that these chal-
lenges are the only ones we face – just the most diffi-
cult to address, as well as those that are fundamental
to having a functional automounter on Linux.

The current status of the changes outlined above
for autofs version 5 is that the direct mount code is
largely done but has seen only limited testing. Devel-
opment of the lazy mount/umount and the initiator
utility has only just begun, so there’s a way to go yet.
Having said that, the direct mount implementation is
crucial in providing a path forward. Hopefully much
of the rest of the work needed will follow without too
many delays.

References

[1] Linux Kernel source, Versions 2.4 and 2.6,
http://www.kernel.org/.

[2] Hal Stern, Mike Eisler and Richardo Labiaga,
Managing NFS and NIS, 2nd Edition, O’Reilly,
June 2001.

[3] W. Richard Stevens, Bill Fenner, and Andrew
M. Rudoff, UNIX Network Programming, The
Sockets Networking API, Volume 1, Third Edi-
tion, Addison-Wesley Professional Computing
Press, 2004.

[4] Travis Bar, Nicolai Langfeldt, Seth Vidal
and Tom McNeal, Linux NFS-HOWTO,
http://nfs.sourceforge.net/nfs-howto/,
2002-08-25.

[5] FiST: Stackable File System Language
and Templates, Eraz Zadok et al.,
http://www.filesystems.org/.

[6] SunTMMicrosystems NFS Administration
Guide, Chapter 5, http://docs.sun.com/, 1995.

[7] Robert Love, Linux Kernel Development, Sec-
ond Edition, Novell Press, 2005.

	Introduction
	Unix automounter
	The master map
	Mount maps

	Linux automounter - autofs
	Linux autofs master map
	Architecture
	Multi-mounts
	VFS interface
	Mount lookup
	Mount expiry

	Limitations
	Master map semantics
	Included Maps
	Large Number of Mounts
	Anonymous devices
	RPC Port Allocation

	Handling multi-mounts
	Parsing nsswitch.conf

	Direct mount support
	Autofs Version 5
	Direct mount implementation
	Lazy mount/umount
	Host maps
	Initiator utility
	Included map support

	Concluding remarks

