
Dra
ft

Prelink

Jakub Jelı́nek
Red Hat, Inc.

jakub@redhat.com

December 10, 2003

Abstract

Prelink is a tool designed to speed up dynamic linking of ELF programs on various Linux architectures.
It speeds up start up of OpenOffice.org 1.1 by 1.8s from 5.5s on 651MHz Pentium III.

1 Preface

In 1995, Linux changed its binary format froma.out to ELF. Thea.out binary format was very inflexible and shared1

libraries were pretty hard to build. Linux’s shared libraries ina.out are position dependent and each had to be given a2

unique virtual address space slot at link time. Maintaining these assignments was pretty hard even when there were just3

a few shared libraries, there used to be a central address registry maintained by humans in form of a text file, but it is4

certainly impossible to do these days when there are thousands of different shared libraries and their size, version and5

exported symbols are constantly changing. On the other side, there was just minimum amount of work the dynamic6

linker had to do in order to load these shared libraries, as relocation handling and symbol lookup was only done at link7

time. The dynamic linker used theuselib system call which just mapped the named library into the address space8

(with no segment or section protection differences, the whole mapping was writable and executable).9

TheELF 1 binary format is one of the most flexible binary formats, its shared libraries are easy to build and there is no10

need for a central assignment of virtual address space slots. Shared libraries are position independent and relocation11

handling and symbol lookup are done partly at the time the executable is created and partly at runtime. Symbols in12

shared libraries can be overridden at runtime by preloading a new shared library defining those symbols or without13

relinking an executable by adding symbols to a shared library which is searched up earlier during symbol lookup or14

by adding new dependent shared libraries to a library used by the program. All these improvements have their price,15

which is a slower program startup, more non-shareable memory per process and runtime cost associated with position16

independent code in shared libraries.17

Program startup ofELF programs is slower than startup ofa.out programs with shared libraries, because the dynamic18

linker has much more work to do before calling program’s entry point. The cost of loading libraries is just slightly19

bigger, asELF shared libraries have typically separate read-only and writable segments, so the dynamic linker has to20

use different memory protection for each segment. The main difference is in relocation handling and associated symbol21

lookup. In thea.out format there was no relocation handling or symbol lookup at runtime. InELF, this cost is much22

more important today than it used to be duringa.out to ELF transition in Linux, as especially GUI programs keep23

constantly growing and start to use more and more shared libraries. 5 years ago programs using more than 10 shared24

libraries were very rare, these days most of the GUI programs link against around 40 or more shared and in extreme25

cases programs use even more than 90 shared libraries. Every shared library adds its set of dynamic relocations to26

the cost and enlarges symbol search scope, so in addition to doing more symbol lookups, each symbol lookup the27

application has to perform is on average more expensive. Another factor increasing the cost is the length of symbol28

names which have to be compared when finding symbol in the symbol hash table of a shared library. C++ libraries29

tend to have extremely long symbol names and unfortunately the new C++ ABI puts namespaces and class names first30

and method names last in the mangled names, so often symbol names differ only in last few bytes of very long names.31

Every time a relocation is applied the entire memory page containing the address which is written to must be loaded32

into memory. The operating system does a copy-on-write operation which also has the consequence that the physical33

1As described in generic ABI document [1] and various processor specific ABI supplements [2], [3], [4], [5], [6], [7], [8].

1

mailto:jakub@redhat.com
http://www.caldera.com/developers/devspecs/gabi41.pdf
http://www.codesourcery.com/cxx-abi/

Dra
ft

memory of the memory page cannot anymore be shared with other processes. WithELF, typically all of program’s34

Global Offset Table, constants and variables containing pointers to objects in shared libraries, etc. are written into35

before the dynamic linker passes control over to the program.36

On most architectures (with some exceptions likeAMD64architecture) position independent code requires that one37

register needs to be dedicated asPIC register and thus cannot be used in the functions for other purposes. This38

especially degrades performance on register-starved architectures likeIA-32 . Also, there needs to be some code to39

set up thePIC register, either invoked as part of function prologues, or when using function descriptors in the calling40

sequence.41

Prelink is a tool which (together with corresponding dynamic linker and linker changes) attempts to bring back some42

of the a.out advantages (such as the speed and less COW’d pages) to theELF binary format while retaining all of43

its flexibility. In a limited way it also attempts to decrease number of non-shareable pages created by relocations.44

Prelink works closely with the dynamic linker in the GNU C library, but probably it wouldn’t be too hard to port it45

to some otherELF using platforms where the dynamic linker can be modified in similar ways.46

2 Caching of symbol lookup results

Program startup can be speeded up by caching of symbol lookup results2. Many shared libraries need more than one47

lookup of a particular symbol. This is especially true for C++ shared libraries, where e.g. the same method is present in48

multiple virtual tables orRTTI data structures. Traditionally, eachELF section which needs dynamic relocations has an49

associated.rela* or .rel* section (depending on whether the architecture is defined to useRELAor RELrelocations).50

The relocations in those sections are typically sorted by ascendingr offset values. Symbol lookups are usually the51

most expensive operation during program startup, so caching the symbol lookups has potential to decrease time spent52

in the dynamic linker. One way to decrease the cost of symbol lookups is to create a table with the size equal to number53

of entries in dynamic symbol table (.dynsym) in the dynamic linker when resolving a particular shared library, but that54

would in some cases need a lot of memory and some time spent in initializing the table. Another option would be to55

use a hash table with chained lists, but that needs both extra memory and would also take extra time for computation of56

the hash value and walking up the chains when doing new lookups. Fortunately, neither of this is really necessary if we57

modify the linker to sort relocations so that relocations against the same symbol are adjacent. This has been done first58

in theSun linker and dynamic linker, so the GNU linker and dynamic linker use the sameELF extensions and linker59

flags. Particularly, the following newELF dynamic tags have been introduced:60

#define DT RELACOUNT 0x6ffffff961

#define DT RELCOUNT 0x6ffffffa62

New options-z combreloc and -z nocombreloc have been added to the linker. The latter causes the previous63

linker behavior, i.e. each section requiring relocations has a corresponding relocation section, which is sorted by64

ascendingr offset . -z combreloc 3 instructs the linker to create just one relocation section for dynamic relocations65

other than symbol jump table (PLT) relocations. This single relocation section (either.rela.dyn or .rel.dyn) is66

sorted, so that relative relocations come first (sorted by ascendingr offset), followed by other relocations, sorted67

again by ascendingr offset . If more relocations are against the same symbol, they immediately follow the first68

relocation against that symbol with lowestr offset . 4. The number of relative relocations at the beginning of the69

section is stored in theDT RELACOUNTresp.DT RELCOUNTdynamic tag.70

The dynamic linker can use the new dynamic tag for two purposes. If the shared library is successfully mapped at the71

same address as the firstPT LOADsegment’s virtual address, the load offset is zero and the dynamic linker can avoid all72

the relative relocations which would just add zero to various memory locations. Normally shared libraries are linked73

with first PT LOADsegment’s virtual address set to zero, so the load offset is non-zero. This can be changed through74

a linker script or by using a specialprelink option --reloc-only to change the base address of a shared library.75

All prelinked shared libraries have non-zero base address as well. If the load offset is non-zero, the dynamic linker76

can still make use of this dynamic tag, as relative relocation handling is typically way simpler than handling other77

2Initially, this has been implemented in theprelink tool andglibc dynamic linker, whereprelink was sorting relocation sections of
existing executables and shared libraries. When this has been implemented in the linker as well and most executables and shared libraries are already
built with -z combreloc , the code fromprelink has been removed, as it was no longer needed for most objects and just increasing the
tool’s complexity.

3-z combreloc is the default in GNU linker versions 2.13 and later.
4In fact the sorting needs to take into account also the type of lookup. Most of the relocations will resolve to aPLT slot in the executable if there

is one for the lookup symbol, because the executable might have a pointer against that symbol without any dynamic relocations. But e.g. relocations
used for thePLT slots must avoid these.

2 Draft 0.7 Prelink

Dra
ft

relocations (since symbol lookup is not necessary) and thus it can handle all relative relocations in a tight loop in one78

place and then handle the remaining relocations with the fully featured relocation handling routine. The second and79

more important point is that if relocations against the same symbol are adjacent, the dynamic linker can use a cache80

with single entry.81

The dynamic linker inglibc , if it seesstatistics as part of theLD DEBUGenvironment variable, displays statistics82

which can show how useful this optimization is. Let’s look at some big C++ application, e.g. konqueror. If not using83

the cache, the statistics looks like this:84

18000: runtime linker statistics:85

18000: total startup time in dynamic loader: 270886059 clock cycles86

18000: time needed for relocation: 266364927 clock cycles (98.3%)87

18000: number of relocations: 7906788

18000: number of relocations from cache: 089

18000: number of relative relocations: 3116990

18000: time needed to load objects: 4203631 clock cycles (1.5%)91

This program run is with hot caches, on non-prelinked system, with lazy binding. The numbers show that the dynamic92

linker spent most of its time in relocation handling and especially symbol lookups. If using symbol lookup cache, the93

numbers look different:94

18013: total startup time in dynamic loader: 132922001 clock cycles95

18013: time needed for relocation: 128399659 clock cycles (96.5%)96

18013: number of relocations: 2547397

18013: number of relocations from cache: 5359498

18013: number of relative relocations: 3116999

18013: time needed to load objects: 4202394 clock cycles (3.1%)100

On average, for one real symbol lookup there were two cache hits and total time spent in the dynamic linker decreased101

by 50%.102

3 Prelink design

Prelink was designed, so that it requires as fewELF extensions as possible. It should not be tied to a particular103

architecture, but should work on allELF architectures. During program startup it should avoid all symbol lookups104

which, as has been shown above, are very expensive. It needs to work in an environment where shared libraries and105

executables are changing from time to time, whether it is because of security updates or feature enhancements. It106

should avoid big code duplication between the dynamic linker and the tool. And prelinked shared libraries need to be107

usable even in non-prelinked executables, or when one of the shared libraries is upgraded and the prelinking of the108

executable has not been updated.109

To minimize the number of performed relocations during startup, the shared libraries (and executables) need to be110

relocated already as much as possible. For relative relocations this means the library needs to be loaded always at111

the same base address, for other relocations this means all shared libraries with definitions those relocations resolve112

to (often this includes all shared libraries the library or executable depends on) must always be loaded at the same113

addresses.ELF executables (with the exception ofPosition Independent Executables) have their load address fixed114

already during linking. For shared libraries,prelink needs something similar toa.out registry of virtual address115

space slots. Maintaining such registry across all installations wouldn’t scale well, soprelink instead assigns these116

virtual address space slots on the fly after looking at all executables it is supposed to speed up and all their dependent117

shared libraries. The next step is to actually relocate shared libraries to the assigned base address.118

When this is done, the actual prelinking of shared libraries can be done. First, all dependent shared libraries need to be119

prelinked (prelink doesn’t support circular dependencies between shared libraries, will just warn about them instead120

of prelinking the libraries in the cycle), then for each relocation in the shared libraryprelink needs to look up the121

symbol in natural symbol search scope of the shared library (the shared library itself first, then breadth first search of122

all dependent shared libraries) and apply the relocation to the symbol’s target section. The symbol lookup code in the123

Jakub Jelı́nek Draft 0.7 3

Dra
ft

dynamic linker is quite complex and big, so to avoid duplicating all this,prelink has chosen to use dynamic linker to124

do the symbol lookups. Dynamic linker is told via a special environment variable it should print all performed symbol125

lookups and their type andprelink reads this output through a pipe. As one of the requirements was that prelinked126

shared libraries must be usable even for non-prelinked executables (duplicating all shared libraries so that there are127

pristine and prelinked copies would be very unfriendly to RAM usage),prelink has to ensure that by applying the128

relocation no information is lost and thus relocation processing can be cheaply done at startup time of non-prelinked129

executables. ForRELAarchitectures this is easier, because the content of the relocation’s target memory is not needed130

when processing the relocation.5 For REL architectures this is not the case.prelink attempts some tricks described131

later and if they fail, needs to convert theRELrelocation section toRELAformat where addend is stored in the relocation132

section instead of relocation target’s memory.133

When all shared libraries an executable (directly or indirectly) depends on are prelinked, relocations in the executable134

are handled similarly to relocations in shared libraries. Unfortunately, not all symbols resolve the same when looked up135

in a shared library’s natural symbol search scope (i.e. as it is done at the time the shared library is prelinked) and when136

looked up in application’s global symbol search scope. Such symbols are herein calledconflicts and the relocations137

against those symbolsconflicting relocations. Conflicts depend on the executable, all its shared libraries and their138

respective order. They are only computable for the shared libraries linked to the executable (libraries mentioned in139

DT NEEDEDdynamic tags and shared libraries they transitively need). The set of shared libraries loaded viadlopen(3)140

cannot be predicted byprelink , neither can the order in which this happened, nor the time when they are unloaded.141

When the dynamic linker prints symbol lookups done in the executable, it also prints conflicts.Prelink then takes all142

relocations against those symbols and builds a specialRELAsection with conflict fixups and stores it into the prelinked143

executable. Also a list of all dependent shared libraries in the order they appear in the symbol search scope, together144

with their checksums and times of prelinking is stored in another special section.145

The dynamic linker first checks if it is itself prelinked. If yes, it can avoid its preliminary relocation processing (this146

one is done with just the dynamic linker itself in the search scope, so that all routines in the dynamic linker can be147

used easily without too many limitations). When it is about to start a program, it first looks at the library list section148

created byprelink (if any) and checks whether they are present in symbol search scope in the same order, none149

have been modified since prelinking and that there aren’t any new shared libraries loaded either. If all these conditions150

are satisfied, prelinking can be used. In that case the dynamic linker processes the fixup section and skips all normal151

relocation handling. If one or more of the conditions are not met, the dynamic linker continues with normal relocation152

processing in the executable and all shared libraries.153

4 Collecting executables and libraries which should be prelinked

Before the actual work can start theprelink tool needs to collect the filenames of executables and libraries it is sup-154

posed to prelink. It doesn’t make any sense to prelink a shared library if no executable is linked against it because155

the prelinking information will not be used anyway. Furthermore, whenprelink needs to do aREL to RELA con-156

version of relocation sections in the shared library (see later) or when it needs to convertSHT NOBITS PLT section to157

SHT PROGBITS, a prelinked shared library might grow in size and so prelinking is only desirable if it will speed up158

startup of some program. The only change which might be useful even for shared libraries which are never linked159

against, only loaded usingdlopen , is relocating to a unique address. This is useful if there are many relative relo-160

cations and there are pages in the shared library’s writable segment which are never written into with the exception161

of those relative relocations. Such shared libraries are rare, soprelink doesn’t handle these automatically, instead162

the administrator or developer can useprelink --reloc-only= ADDRESS to relocate it manually. Prelinking an163

executable requires all shared libraries it is linked against to be prelinked already.164

Prelink has two main modes in which it collects filenames. One isincremental prelinking, whereprelink is165

invoked without the-a option. In this mode,prelink queues for prelinking all executables and shared libraries given166

on the command line, all executables in directory trees specified on the command line, and all shared libraries those167

executables and shared libraries are linked against. For the reasons mentioned earlier a shared library is queued only if168

a program is linked with it or the user tells the tool to do it anyway by explicitly mentioning it on the command line.169

The second mode isfull prelinking, where the-a option is given on the command line. This in addition to incremental170

prelinking queues all executables found in directory trees specified inprelink.conf (which typically includes all or171

most directories where system executables are found). For each directory subtree in the config file the user can specify172

whether symbolic links to places outside of the tree are to be followed or not and whether searching should continue173

even across filesystem boundaries.174

5Relative relocations on certainRELAarchitectures use relocation target’s memory, either alone or together withr addend field.

4 Draft 0.7 Prelink

Dra
ft

There is also an option to blacklist some executables or directory trees so that the executables or anything in the175

directory trees will not be prelinked. This can be specified either on the command line or in the config file.176

Prelink will not attempt to change executables which use a non-standard dynamic linker6 for security reasons,177

because it actually needs to execute the dynamic linker for symbol lookup and it needs to avoid executing some random178

unknown executable with the permissions with whichprelink is run (typicallyroot , with the permissions at least179

for changing all executables and shared libraries in the system). The administrator should ensure thatprelink.conf180

doesn’t contain world-writable directories and such directories are not given to the tool on the command line either, but181

the tool should be distrustful of the objects nevertheless.182

Also, prelink will not change shared libraries which are not specified directly on the command line or located in the183

directory trees specified on the command line or in the config file. This is so that e.g.prelink doesn’t try to change184

shared libraries on shared networked filesystems, or at least it is possible to configure the tool so that it doesn’t do it.185

For each executable and shared library it collects,prelink executes the dynamic linker to list all shared libraries it186

depends on, checks if it is already prelinked and whether any of its dependencies changed. Objects which are already187

prelinked and have no dependencies which changed don’t have to be prelinked again (with the exception when e.g.188

virtual address space layout code finds out it needs to assign new virtual address space slots for the shared library or189

one of its dependencies). Running the dynamic linker to get the symbol lookup information is a quite costly operation190

especially on systems with many executables and shared libraries installed, soprelink offers a faster-q mode. In191

all modes,prelink stores modification and change times of each shared library and executable together with all192

object dependencies and other information intoprelink.cache file. When prelinking in-q mode, it just compares193

modification and change times of the executables and shared libraries (and all their dependencies). Change time is194

needed becauseprelink preserves modification time when prelinking (as well as permissions, owner and group). If195

the times match, it assumes the file has not changed since last prelinking. Therefore the file can be skipped if it is196

already prelinked and none of the dependencies changed. If any time changed or one of the dependencies changed, it197

invokes the dynamic linker the same way as in normal mode to find out real dependencies, whether it has been prelinked198

or not etc. The collecting phase in normal mode can take a few minutes, while in quick mode usually takes just a few199

seconds, as the only operation it does is it calls just lots ofstat system calls.200

5 Assigning virtual address space slots

Prelink has to ensure at least that for all successfully prelinked executables all shared libraries they are (transitively)201

linked against have non-overlapping virtual address space slots (furthermore they cannot overlap with the virtual ad-202

dress space range used by the executable itself, itsbrk area, typical stack location andld.so.cache and other files203

mmaped by the dynamic linker in early stages of dynamic linking (before all dependencies are mmaped). If there were204

any overlaps, the dynamic linker (which mmaps the shared libraries at the desired location withoutMAPFIXED mmap205

flag so that it is only soft requirement) would not manage to mmap them at the assigned locations and the prelinking206

information would be invalidated (the dynamic linker would have to do all normal relocation handling and symbol207

lookups). Executables are linked against very wide variety of shared library combinations and that has to be taken into208

account.209

The simplest approach is to sort shared libraries by descending usage count (so that most often used shared libraries210

like the dynamic linker,libc.so etc. are close to each other) and assign them consecutive slots starting at some211

architecture specific base address (with a page or two in between the shared libraries to allow for a limited growth of212

shared libraries without having to reposition them).Prelink has to find out which shared libraries will need aREL to213

RELAconversion of relocation sections and for those which will need the conversion count with the increased size of214

the library’s loadable segments. This isprelink behavior without-m and-R options.215

The architecture specific base address is best located a few megabytes above the location wheremmapwith NULLfirst216

argument and withoutMAPFIXED starts allocating memory areas (in Linux this is the value ofTASK UNMAPPEDBASE217

macro). 7 The reason for not starting to assign addresses inprelink immediately atTASK UNMAPPEDBASE is that218

ld.so.cache and other mappings by the dynamic linker will end up in the same range and could overlap with the219

shared libraries. Also, if some application usesdlopen to load a shared library which has been prelinked,8 those220

6Standard dynamic linker path is hardcoded in the executable for each architecture. It can be overridden from the command line, but only with
one dynamic linker name (normally, multiple standard dynamic linkers are used when prelinking mixed architecture systems).

7TASK UNMAPPEDBASEhas been chosen on each platform so that there is enough virtual memory for both thebrk area (between exe-
cutable’s end and this memory address) andmmaparea (between this address and bottom of stack).

8Typically this is because some other executable is linked against that shared library directly.

Jakub Jelı́nek Draft 0.7 5

Dra
ft

few megabytes aboveTASK UNMAPPEDBASE increase the probability that the stack slot will be still unused (it can221

clash with e.g. non-prelinked shared libraries loaded bydlopen earlier9 or other kinds of mmap calls withNULLfirst222

argument likemalloc allocating big chunks of memory, mmaping of locale database, etc.).223

This simplest approach is unfortunately problematic on 32-bit (or 31-bit) architectures where the total virtual address224

space for a process is somewhere between 2GB (S/390) and almost 4GB (Linux IA-32 4GB/4GB kernel split, AMD64225

running 32-bit processes, etc.). Typical installations these days contain thousands of shared libraries and if each of226

them is given a unique address space slot, on average executables will have pretty sparse mapping of its shared libraries227

and there will be less contiguous virtual memory for application’s own use10.228

Prelink has a special mode, turned on with-m option, in which it computes what shared libraries are ever loaded229

together in some executable (not consideringdlopen). If two shared libraries are ever loaded together,prelink230

assigns them different virtual address space slots, but if they never appear together, it can give them overlapping231

addresses. For example applications usingKDE toolkit link typically against manyKDE shared libraries, programs232

written using theGtk+ toolkit link typically against manyGtk+ shared libraries, but there are just very few programs233

which link against bothKDEandGtk+ shared libraries, and even if they do, they link against very small subset of234

those shared libraries. So allKDEshared libraries not in that subset can use overlapping addresses with allGtk+ shared235

libraries but the few exceptions. This leads to considerably smaller virtual address space range used by all prelinked236

shared libraries, but it has its own disadvantages too. It doesn’t work too well with incremental prelinking, because then237

not all executables are investigated, just those which are given onprelink ’s command line.Prelink also considers238

executables inprelink.cache , but it has no information about executables which have not been prelinked yet. If239

a new executable, which links against some shared libraries which never appeared together before, is prelinked later,240

prelink has to assign them new, non-overlapping addresses. This means that any executables, which linked against241

the library that has been moved and re-prelinked, need to be prelinked again. If this happened during incremental242

prelinking,prelink will fix up only the executables given on the command line, leaving other executables untouched.243

The untouched executables would not be able to benefit from prelinking anymore.244

Although with the above two layout schemes shared library addresses can vary slightly between different hosts running245

the same distribution (depending on the exact set of installed executables and libraries), especially the most often used246

shared libraries will have identical base addresses on different computers. This is often not desirable for security247

reasons, because it makes it slightly easier for various exploits to jump to routines they want. Standard Linux kernels248

assign always the same addresses to shared libraries loaded by the application at each run, so with these kernels249

prelink doesn’t make things worse. But there are kernel patches, such as Red Hat’sExec-Shield , which randomize250

memory mappings on each run. If shared libraries are prelinked, they cannot be assigned different addresses on each251

run (prelinking information can be only used to speed up startup if they are mapped at the base addresses which was252

used during prelinking), which means prelinking might not be desirable on some edge servers.Prelink can assign253

different addresses on different hosts though, which is almost the same as assigning random addresses on each run for254

long running processes such as daemons. Furthermore, the administrator can force full prelinking and assignment of255

new random addresses every few days (if he is also willing to restart the services, so that the old shared libraries and256

executables don’t have to be kept in memory).257

To assign random addressesprelink has the-R option. This causes a random starting address somewhere in the258

architecture specific range in which shared libraries are assigned, and minor random reshuffling in the queue of shared259

libraries which need address assignment (normally it is sorted by descending usage count, with randomization shared260

libraries which are not very far away from each other in the sorted list can be swapped). The-R option should work261

orthogonally to the-m option.262

Some architectures have special further requirements on shared library address assignment. On 32-bit PowerPC, if263

shared libraries are located close to the executable, so that everything fits into 32MB area,PLT slots resolving to those264

shared libraries can use the branch relative instruction instead of more expensive sequences involving memory load and265

indirect branch. If shared libraries are located in the first 32MB of address space,PLT slots resolving to those shared266

libraries can use the branch absolute instruction (but alreadyPLT slots in those shared libraries resolving to addresses in267

the executable cannot be done cheaply). This means for optimizationprelink should assign addresses from a 24MB268

region below the executable first, assuming most of the executables are smaller than those remaining 8MB.prelink269

assigns these from higher to lower addresses. When this region is full,prelink starts from address 0x4000011 up270

9If shared libraries have firstPT LOAD segment’s virtual address zero, the kernel typically picks first empty slot above
TASK UNMAPPEDBASEbig enough for the mapping.

10Especially databases look these days for every byte of virtual address space on 32-bit architectures.
11To leave some pages unmapped to catchNULLpointer dereferences.

6 Draft 0.7 Prelink

Dra
ft

till the bottom of the first area. Only when all these areas are full,prelink starts picking addresses high above the271

executable, so that sufficient space is left in between to leave room forbrk . When-R option is specified,prelink272

needs to honor it, but in a way which doesn’t totally kill this optimization. So it picks up a random start base within273

each of the 3 regions separately, splitting them into 6 regions.274

Another architecture which needs to be handled specially is IA-32 when usingExec-Shield . The IA-32 architecture275

doesn’t have an bit to disable execution for each page, only for each segment. All readable pages are normally exe-276

cutable. This means the stack is usually executable, as is memory allocated bymalloc . This is undesirable for security277

reasons, exploits can then overflow a buffer on the stack to transfer control to code it creates on the stack. Only very278

few programs actually need an executable stack. For example programs using GCC trampolines for nested functions279

need it or when an application itself creates executable code on the stack and calls it.Exec-Shield works around this280

IA-32 architecture deficiency by using a separate code segment, which starts at address 0 and spans address space until281

its limit, highest page which needs to be executable. This is dynamically changed when some page with higher address282

than the limit needs to be executable (either because ofmmapwith PROTEXECbit set, ormprotect with PROTEXEC283

of an existing mapping). This kind of protection is of course only effective if the limit is as low as possible. The284

kernel tries to put all new mappings withPROTEXECset andNULL address low. If possible intoASCII Shield area285

(first 16MB of address space) , if not, at least below the executable. Ifprelink detectsExec-Shield , it tries to do286

the same as kernel when assigning addresses, i.e. prefers to assign addresses inASCII Shield area and continues with287

other addresses below the program. It needs to leave first 1MB plus 4KB of address space unallocated though, because288

that range is often used by programs usingvm86 system call.289

6 Relocation of libraries

When a shared library has a base address assigned, it needs to be relocated so that the base address is equal to the first290

PT LOADsegment’sp vaddr . The effect of this operation should be bitwise identical as if the library were linked with291

that base address originally. That is, the following scripts should produce identical output:292

$ gcc -g -shared -o libfoo.so.1.0.0 -Wl,-h,libfoo.so.1 \293

input1.o input2.o somelib.a294

$ prelink --reloc-only=0x54321000 libfoo.so.1.0.0295

Listing 0: Script to relocate a shared library after linking usingprelink

and:296

$ gcc -shared -Wl,--verbose 2>&1 > /dev/null \297

| sed -e ’/ˆ======/,/ˆ======/!d’ \298

-e ’/ˆ======/d;s/0\(+ SIZEOF_HEADERS\)/0x54321000\1/’ \299

> libfoo.so.lds300

$ gcc -Wl,-T,libfoo.so.lds -g -shared -o libfoo.so.1.0.0 \301

-Wl,-h,libfoo.so.1 input1.o input2.o somelib.a302

Listing 1: Script to link a shared library at non-standard base

The first script creates a normal shared library with the default base address 0 and then usesprelink ’s special mode303

when it just relocates a library to a given address. The second script first modifies a built-in GNU linker script for304

linking of shared libraries, so that the base address is the one given instead of zero and stores it into a temporary file.305

Then it creates a shared library using that linker script.306

The relocation operation involves mostly adding the difference between old and new base address to allELF fields307

which contain values representing virtual addresses of the shared library (or in the program header table also represent-308

ing physical addresses). File offsets need to be unmodified. Most places where the adjustments need to be done are309

clear,prelink just has to watchELF spec to see which fields contain virtual addresses.310

One problem is with absolute symbols.Prelink has no way to find out if an absolute symbol in a shared library is311

really meant as absolute and thus not changing during relocation, or if it is an address of some place in the shared312

Jakub Jelı́nek Draft 0.7 7

Dra
ft

library outside of any section or on their edge. For instance symbols created in the GNU linker’s script outside of313

section directives have allSHNABSsection, yet they can be location in the library (e.g.symbolfoo = .) or they can314

be absolute (e.g.symbolbar = 0x12345000). This distinction is lost at link time. But the dynamic linker when315

looking up symbols doesn’t make any distinction between them, all addresses during dynamic lookup have the load316

offset added to it.Prelink chooses to relocate any absolute symbols with value bigger than zero, that wayprelink317

--reloc-only gets bitwise identical output with linking directly at the different base in almost all real-world cases.318

Thread Local Storage symbols (those withSTT TLS type) are never relocated, as their values are relative to start of319

shared library’s thread local area.320

When relocating the dynamic section there are no bits which tell if a particular dynamic tag usesd un.d ptr (which321

needs to be adjusted) ord un.d val (which needs to be left as is). Soprelink has to hardcode a list of well known322

architecture independent dynamic tags which need adjusting and have a hook for architecture specific dynamic tag323

adjustment. Sun came up withDT ADDRRNGLOto DT ADDRRNGHIandDT VALRNGLOto DT VALRNGHIdynamic tag324

number ranges, so at least as long as these ranges are used for new dynamic tagsprelink can relocate correctly even325

without listing them all explicitly.326

When relocating.rela.* or .rel.* sections, which is done in architecture specific code, relative relocations and327

on .got.plt using architectures alsoPLT relocations typically need an adjustment. The adjustment needs to be done328

in eitherr addend field of theElfNN Rela structure, in the memory pointed byr offset , or in both locations. On329

some architectures what needs adjusting is not even the same for all relative relocations. Relative relocations against330

some sections need to haver addend adjusted while others need to have memory adjusted. On many architectures,331

first few words inGOTare special and some of them need adjustment.332

The hardest part of the adjustment is handling the debugging sections. These are non-allocated sections which typically333

have no corresponding relocation section associated with them.Prelink has to match the various debuggers in what334

fields it adjusts and what are skipped. As of this writingprelink should handleDWARF 2[15] standard as corrected335

(and extended) byDWARF 3 draft [16], Stabs [17] with GCC extensions and Alpha or MIPSMdebug.336

DWARF 2debugging information involves many separate sections, each of them with a unique format which needs337

to be relocated differently. For relocation of the.debug info section compilation unitsprelink has to parse the338

corresponding part of the.debug abbrev section, adjust all values of attributes that are using theDWFORMaddr339

form and adjust embedded location lists..debug ranges and.debug loc section portions depend on the exact place340

in .debug info section from which they are referenced, so thatprelink can keep track of their base address.DWARF341

debugging format is very extendable, soprelink needs to be very conservative when it sees unknown extensions.342

It needs to fail prelinking instead of silently break debugging information if it sees an unknown.debug * section,343

unknown attribute form or unknown attribute with one of theDWFORMblock* forms, as they can potentially embed344

addresses which would need adjustment.345

For stabs prelink tried to match GDB behavior. ForN FUN, it needs to differentiate between function start and346

function address which are both encoded with this type, the rest of types either always need relocating or never. And347

similarly to DWARF 2handling, it needs to reject unknown types.348

The relocation code inprelink is a little bit more generic than what is described above, as it is used also by other parts349

of prelink , when growing sections in a middle of the shared library duringREL to RELAconversion. All adjustment350

functions get passed both the offset it should add to virtual addresses and a start address. Adjustment is only done if351

the old virtual address was bigger or equal than the start address.352

7 REL to RELA conversion

On architectures which normally use theREL format for relocations instead ofRELA (IA-32, ARM and MIPS), if353

certain relocation types use the memoryr offset points to during relocation,prelink has to either convert them to354

a different relocation type which doesn’t use the memory value, or the whole.rel.dyn section needs to be converted355

to RELAformat. Let’s describe it on an example on IA-32 architecture:356

$ cat > test1.c <<EOF357

extern int i[4];358

int *j = i + 2;359

EOF360

8 Draft 0.7 Prelink

http://www.eagercon.com/dwarf/dwarf-2.0.0.pdf
http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
http://sources.redhat.com/cgi-bin/cvsweb.cgi/src/gdb/doc/stabs.texinfo?cvsroot=src

Dra
ft

$ cat > test2.c <<EOF361

int i[4];362

EOF363

$ gcc -nostdlib -shared -fpic -s -o test2.so test2.c364

$ gcc -nostdlib -shared -fpic -o test1.so test1.c ./test2.so365

$ readelf -l test1.so | grep LOAD | head -1366

LOAD 0x000000 0x00000000 0x00000000 0x002b8 0x002b8 R E 0x1000367

$ readelf -l test2.so | grep LOAD | head -1368

LOAD 0x000000 0x00000000 0x00000000 0x00244 0x00244 R E 0x1000369

$ readelf -r test1.so370

371

Relocation section ’.rel.dyn’ at offset 0x2b0 contains 1 entries:372

Offset Info Type Sym.Value Sym. Name373

000012b8 00000d01 R_386_32 00000000 i374

$ objdump -s -j .data test1.so375

376

test1.so: file format elf32-i386377

378

Contents of section .data:379

12b8 08000000380

$ readelf -s test2.so | grep i\$381

11: 000012a8 16 OBJECT GLOBAL DEFAULT 8 i382

$ prelink -N ./test1.so ./test2.so383

$ readelf -l test1.so | grep LOAD | head -1384

LOAD 0x000000 0x04dba000 0x04dba000 0x002bc 0x002bc R E 0x1000385

$ readelf -l test2.so | grep LOAD | head -1386

LOAD 0x000000 0x04db6000 0x04db6000 0x00244 0x00244 R E 0x1000387

$ readelf -r test1.so388

389

Relocation section ’.rel.dyn’ at offset 0x2b0 contains 1 entries:390

Offset Info Type Sym.Value Sym. Name + Addend391

04dbb2bc 00000d01 R_386_32 00000000 i + 8392

$ objdump -s -j .data test1.so393

394

test1.so: file format elf32-i386395

396

Contents of section .data:397

4dbb2bc b072db04 .r..398

$ readelf -s test2.so | grep i\$399

11: 04db72a8 16 OBJECT GLOBAL DEFAULT 8 i400

Listing 2: REL to RELAconversion example

This relocation is againsti + 8, where the addend is stored at the memory location pointed byr offset . Prelink401

assigned base address 0x4dba000 totest1.so and 0x4db6000 totest2.so . Prelink above converted theREL402

section intest1.so to RELA, but let’s assume it did not. All output containing2bc above would change to2b8403

(that changed above only because.rel.dyn section grew up by 4 bytes during the conversion toRELA format), the404

rest would stay unchanged. When some program linked againsttest1.so was prelinked, the (only) relocation in405

test1.so would not be used andj would contain the right value, 0x4db72b0 (address ofi + 8; note that IA-32 is little406

endian, so the values in .data section are harder to read for a human). Now, let’s assume one of the shared libraries407

the executable is linked against is upgraded. This means prelink information cannot be used, as it is out of date. Let’s408

assume it was a library other thantest2.so . Normal relocation processing fortest1.so needs to happen. Standard409

R 386 32 calculation isS + A, in this case 0x4db72a8 + 0x4db72b0 = 0x9b6e558 andj contains wrong value. Either410

test2.so could change and now thei variable would have different address, or some other shared library linked to411

the executable could overload symboli. Without additional information the dynamic linker cannot find out the addend412

is 8.413

The original value of a symbol could perhaps be stored in some special allocated section and the dynamic linker could414

do some magic to locate it, but it would mean standard relocation handling code in the dynamic linker cannot be used415

for relocation processing of prelinked shared libraries where prelinking information cannot be used. Soprelink in416

this case converts the whole.rel.dyn section into theRELAformat, the addend is stored inr addend field and when417

Jakub Jelı́nek Draft 0.7 9

Dra
ft

doing relocation processing, it really doesn’t matter what value is at the memory location pointed byr offset . The418

disadvantage of this is that the relocation section grew by 50%. If prelinking information can be used, it shouldn’t419

matter much, since the section is never loaded at runtime because it is not accessed. If prelinking cannot be used,420

whether because it is out of date or because the shared library has been loaded bydlopen , it will increase memory421

footprint, but it is read-only memory which is typically not used after startup and can be discarded as it is backed out422

by the file containing the shared library.423

At least on IA-32,REL to RELA conversion is not always necessary. IfR 386 32 added is originally 0,prelink424

can instead change its type toR 386 GLOBDAT, which is a similar dynamic relocation, but calculated asS instead of425

S + A. There is no similar conversion forR 386 PC32 possible though, on the other side this relocation type should426

never appear in position independent shared libraries, only in position dependent code. On ARM, the situation is the427

same, just using different relocation names (R ARM32, R ARMGLOBDATandR ARMPC24).428

The.rel.plt section doesn’t have to be converted toRELAformat on either of these architectures, if the conversion is429

needed, all other.rel.* allocated sections, which have to be adjacent as they are pointed to byDT RELandDT RELSZ430

dynamic tags, have to be converted together. The conversion itself is fairly easy, some architecture specific code just has431

to fetch the original addend from memory pointed by the relocation and store it intor addend field (or clearr addend432

if the particular relocation type never uses the addend). The main problem is that when the conversion happens, the433

.rel.dyn section grows by 50% and there needs to be room for that in the read-only loadable segment of the shared434

library.435

In shared libraries it is always possible to grow the first read-onlyPT LOADsegment by adding the additional data at the436

beginning of the read-only segment, as the shared library is relocatable.Prelink can relocate the whole shared library437

to a higher address than it has assigned for it. The file offsets of all sections and the section header table file offset438

need to be increased, but theELF header and program headers need to stay at the beginning of the file. The relocation439

section can then be moved to the newly created space between the end of the program header table and the first section.440

Moving the section from the old location to the newly created space would leave often very big gap in virtual address441

space as well as in the file at the old location of the relocation section. Fortunately the linker typically puts special442

ELF sections including allocated relocation section before the code section and other read-only sections under user’s443

control. These special sections are intended for dynamic linking only. Their addresses are stored just in the.dynamic444

section andprelink can easily adjust them there. There is no need for a shared library to store address of one of the445

special sections into its code or data sections and existing linkers in fact don’t create such references. When growing446

the relocation section,prelink checks whether all sections before the relocation section are special12 and if they are,447

just moves them to lower addresses, so that the newly created space is right above the relocation section. The advantage448

is that instead of moving all sections by the size of the new relocation section they can be adjusted ideally just by the449

difference between old and new relocation section size.450

There are two factors which can increase the necessary adjustment of all higher sections. The first is required section451

alignment of any allocated section above the relocation section.Prelink needs to find the highest section alignment452

among those sections and increase the adjustment from the difference between old and new relocation section up to the453

next multiple of that alignment.454

The second factor is only relevant to shared libraries where linker optimized the data segment placement. Traditionally455

linker assigned the end address of the read-only segment plus the architecture’s maximumELF page size as the start456

address of the read-write segment. While this created smallest file sizes of the shared libraries, it often wasted one457

page in the read-write segment because of partial pages. When linker optimizes such that less space is wasted in partial458

pages, the distance between read-only and read-write segments can be smaller than architecture specific maximumELF459

page size.Prelink has to take this into account, so that when adjusting the sections the read-only and read-write460

segment don’t end up on the same page. Unfortunatelyprelink cannot increase or decrease the distance between the461

read-only and read-write segments, since it is possible that the shared library has relative addresses of any allocated462

code, data or.bss sections stored in its sections without any relocations which would allowprelink to change them.463

Prelink has to move all sections starting with the first allocatedSHT PROGBITSsection other than.interp up to the464

last allocatedSHT PROGBITSor SHT NOBITS section as a block and thus needs to increase the adjustment in steps of465

the highest section alignment as many times times as needed so that the segments end up in different pages. Below are466

3 examples:467

12As special sectionsprelink considers sections withSHT NOTE, SHT HASH, SHT DYNSYM, SHT STRTAB, SHT GNUverdef ,
SHT GNUverneed , SHT GNUversym , SHT RELor SHT RELAtype or the.interp section.

10 Draft 0.7 Prelink

Dra
ft

$ cat > test1.c <<EOF468

int i[2] __attribute__((aligned (32)));469

#define J1(N) int *j##N = &i[1];470

#define J2(N) J1(N##0) J1(N##1) J1(N##2) J1(N##3) J1(N##4)471

#define J3(N) J2(N##0) J2(N##1) J2(N##2) J2(N##3) J2(N##4)472

#define J4(N) J3(N##0) J3(N##1) J3(N##2) J3(N##3) J3(N##4)473

J4(0) J4(1) J3(2) J3(3) J1(4)474

const int l[256] = { [10] = 1 };475

/* Put a zero sized section at the end of read-only segment,476

so that the end address of the segment is printed. */477

asm (".section ro_seg_end, \"a\"; .previous");478

EOF479

$ gcc -shared -O2 -nostdlib -fpic -o test1.so test1.c480

$ readelf -S test1.so | grep ’ˆ \[’481

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al482

[0] NULL 00000000 000000 000000 00 0 0 0483

[1] .hash HASH 000000b4 0000b4 000930 04 A 2 0 4484

[2] .dynsym DYNSYM 000009e4 0009e4 001430 10 A 3 d 4485

[3] .dynstr STRTAB 00001e14 001e14 000735 00 A 0 0 1486

[4] .rel.dyn REL 0000254c 00254c 000968 08 A 2 0 4487

[5] .text PROGBITS 00002eb4 002eb4 000000 00 AX 0 0 4488

[6] .rodata PROGBITS 00002ec0 002ec0 000400 00 A 0 0 32489

[7] ro_seg_end PROGBITS 000032c0 0032c0 000000 00 A 0 0 1490

[8] .data PROGBITS 000042c0 0032c0 0004b4 00 WA 0 0 4491

[9] .dynamic DYNAMIC 00004774 003774 000070 08 WA 3 0 4492

[10] .got PROGBITS 000047e4 0037e4 00000c 04 WA 0 0 4493

[11] .bss NOBITS 00004800 003800 000008 00 WA 0 0 32494

[12] .comment PROGBITS 00000000 003800 000033 00 0 0 1495

[13] .shstrtab STRTAB 00000000 003833 000075 00 0 0 1496

[14] .symtab SYMTAB 00000000 003b28 001470 10 15 11 4497

[15] .strtab STRTAB 00000000 004f98 000742 00 0 0 1498

$ readelf -l test1.so | grep LOAD499

LOAD 0x000000 0x00000000 0x00000000 0x032c0 0x032c0 R E 0x1000500

LOAD 0x0032c0 0x000042c0 0x000042c0 0x00530 0x00548 RW 0x1000501

$ prelink -N ./test1.so502

$ readelf -l test1.so | grep LOAD503

LOAD 0x000000 0x02000000 0x02000000 0x03780 0x03780 R E 0x1000504

LOAD 0x003780 0x02004780 0x02004780 0x00530 0x00548 RW 0x1000505

$ readelf -S test1.so | grep ’ˆ \[’506

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al507

[0] NULL 00000000 000000 000000 00 0 0 0508

[1] .hash HASH 020000b4 0000b4 000930 04 A 2 0 4509

[2] .dynsym DYNSYM 020009e4 0009e4 001430 10 A 3 d 4510

[3] .dynstr STRTAB 02001e14 001e14 000735 00 A 0 0 1511

[4] .rel.dyn RELA 0200254c 00254c 000e1c 0c A 2 0 4512

[5] .text PROGBITS 02003374 003374 000000 00 AX 0 0 4513

[6] .rodata PROGBITS 02003380 003380 000400 00 A 0 0 32514

[7] ro_seg_end PROGBITS 02003780 003780 000000 00 A 0 0 1515

[8] .data PROGBITS 02004780 003780 0004b4 00 WA 0 0 4516

[9] .dynamic DYNAMIC 02004c34 003c34 000070 08 WA 3 0 4517

[10] .got PROGBITS 02004ca4 003ca4 00000c 04 WA 0 0 4518

[11] .bss NOBITS 02004cc0 003cc0 000008 00 WA 0 0 32519

[12] .comment PROGBITS 00000000 003cc0 000033 00 0 0 1520

[13] .gnu.liblist GNU_LIBLIST 00000000 003cf3 000000 14 14 0 4521

[14] .gnu.libstr STRTAB 00000000 003cf3 000000 00 0 0 1522

[15] .gnu.prelink_undo PROGBITS 00000000 003cf4 00030c 01 0 0 4523

[16] .shstrtab STRTAB 00000000 004003 0000a0 00 0 0 1524

[17] .symtab SYMTAB 00000000 0043a0 001470 10 18 11 4525

[18] .strtab STRTAB 00000000 005810 000742 00 0 0 1526

Listing 3: Growing read-only segment with segment distance one page

In this example the read-write segment starts at address0x42c0 , which is one page above the end of read-only segment.527

Jakub Jelı́nek Draft 0.7 11

Dra
ft

�����
�����
�����

�����
�����
�����

.datagot .bss

�����
�����
�����

�����
�����
�����

.hashdynstr .rel.dyn .text ... ro_seg_end

.hashdynstr .rel.dyn .text ... ro_seg_end

.datagot .bss

page boundary page boundary

Figure 1: Growing read-only segment with segment distance one page

Prelink needs to grow the read-onlyPT LOADsegment by 50% of.rel.dyn size, i.e.0x4b4 bytes.Prelink just528

needs to round that up for the highest alignment (32 bytes required by.rodata or .bss sections) and moves all529

sections above.rel.dyn by 0x4c0 bytes.530

$ cat > test2.c <<EOF531

int i[2] __attribute__((aligned (32)));532

#define J1(N) int *j##N = &i[1];533

#define J2(N) J1(N##0) J1(N##1) J1(N##2) J1(N##3) J1(N##4)534

#define J3(N) J2(N##0) J2(N##1) J2(N##2) J2(N##3) J2(N##4)535

#define J4(N) J3(N##0) J3(N##1) J3(N##2) J3(N##3) J3(N##4)536

J4(0) J4(1) J3(2) J3(3) J1(4)537

const int l[256] = { [10] = 1 };538

int k[670];539

asm (".section ro_seg_end, \"a\"; .previous");540

EOF541

$ gcc -shared -O2 -nostdlib -fpic -o test2.so test2.c542

$ readelf -S test2.so | grep ’ˆ \[’543

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al544

[0] NULL 00000000 000000 000000 00 0 0 0545

[1] .hash HASH 000000b4 0000b4 000934 04 A 2 0 4546

[2] .dynsym DYNSYM 000009e8 0009e8 001440 10 A 3 d 4547

[3] .dynstr STRTAB 00001e28 001e28 000737 00 A 0 0 1548

[4] .rel.dyn REL 00002560 002560 000968 08 A 2 0 4549

[5] .text PROGBITS 00002ec8 002ec8 000000 00 AX 0 0 4550

[6] .rodata PROGBITS 00002ee0 002ee0 000400 00 A 0 0 32551

[7] ro_seg_end PROGBITS 000032e0 0032e0 000000 00 A 0 0 1552

[8] .data PROGBITS 00004000 004000 0004b4 00 WA 0 0 4553

[9] .dynamic DYNAMIC 000044b4 0044b4 000070 08 WA 3 0 4554

[10] .got PROGBITS 00004524 004524 00000c 04 WA 0 0 4555

[11] .bss NOBITS 00004540 004540 000a88 00 WA 0 0 32556

[12] .comment PROGBITS 00000000 004540 000033 00 0 0 1557

[13] .shstrtab STRTAB 00000000 004573 000075 00 0 0 1558

[14] .symtab SYMTAB 00000000 004868 001480 10 15 11 4559

[15] .strtab STRTAB 00000000 005ce8 000744 00 0 0 1560

$ readelf -l test2.so | grep LOAD561

LOAD 0x000000 0x00000000 0x00000000 0x032e0 0x032e0 R E 0x1000562

LOAD 0x004000 0x00004000 0x00004000 0x00530 0x00fc8 RW 0x1000563

$ prelink -N ./test2.so564

$ readelf -l test2.so | grep LOAD565

LOAD 0x000000 0x02000000 0x02000000 0x037a0 0x037a0 R E 0x1000566

LOAD 0x0044c0 0x020044c0 0x020044c0 0x00530 0x00fc8 RW 0x1000567

$ readelf -S test2.so | grep ’ˆ \[’568

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al569

[0] NULL 00000000 000000 000000 00 0 0 0570

[1] .hash HASH 020000b4 0000b4 000934 04 A 2 0 4571

12 Draft 0.7 Prelink

Dra
ft

[2] .dynsym DYNSYM 020009e8 0009e8 001440 10 A 3 d 4572

[3] .dynstr STRTAB 02001e28 001e28 000737 00 A 0 0 1573

[4] .rel.dyn RELA 02002560 002560 000e1c 0c A 2 0 4574

[5] .text PROGBITS 02003388 003388 000000 00 AX 0 0 4575

[6] .rodata PROGBITS 020033a0 0033a0 000400 00 A 0 0 32576

[7] ro_seg_end PROGBITS 020037a0 0037a0 000000 00 A 0 0 1577

[8] .data PROGBITS 020044c0 0044c0 0004b4 00 WA 0 0 4578

[9] .dynamic DYNAMIC 02004974 004974 000070 08 WA 3 0 4579

[10] .got PROGBITS 020049e4 0049e4 00000c 04 WA 0 0 4580

[11] .bss NOBITS 02004a00 004a00 000a88 00 WA 0 0 32581

[12] .comment PROGBITS 00000000 004a00 000033 00 0 0 1582

[13] .gnu.liblist GNU_LIBLIST 00000000 004a33 000000 14 14 0 4583

[14] .gnu.libstr STRTAB 00000000 004a33 000000 00 0 0 1584

[15] .gnu.prelink_undo PROGBITS 00000000 004a34 00030c 01 0 0 4585

[16] .shstrtab STRTAB 00000000 004d43 0000a0 00 0 0 1586

[17] .symtab SYMTAB 00000000 0050e0 001480 10 18 11 4587

[18] .strtab STRTAB 00000000 006560 000744 00 0 0 1588

Listing 4: Growing read-only segment not requiring additional padding

�����
�����
�����

�����
�����
�����

.datagot .bss

�����
�����
�����

�����
�����
�����

.hashdynstr .rel.dyn .text ... ro_seg_end

.hashdynstr .rel.dyn .text ... ro_seg_end

page boundary

.datagot .bss

page boundary

Figure 2: Growing read-only segment not requiring additional padding

In the second exampleprelink can grow by just0x4c0 bytes as well, eventhough the distance between read-write589

and read-only segment is just0xd20 bytes. With this distance, hypothetical adjustment by any size less than0xd21590

bytes (modulo 4096) would need just rounding up to the next multiple of 32 bytes, while adjustments from0xd21 up591

to 0xfe0 would require adjustments in multiples of 4096 bytes.592

$ cat > test3.c <<EOF593

int i[2] __attribute__((aligned (32)));594

#define J1(N) int *j##N = &i[1];595

#define J2(N) J1(N##0) J1(N##1) J1(N##2) J1(N##3) J1(N##4)596

#define J3(N) J2(N##0) J2(N##1) J2(N##2) J2(N##3) J2(N##4)597

#define J4(N) J3(N##0) J3(N##1) J3(N##2) J3(N##3) J3(N##4)598

J4(0) J4(1) J3(2) J3(3) J1(4)599

int k[670];600

asm (".section ro_seg_end, \"a\"; .previous");601

EOF602

$ gcc -shared -O2 -nostdlib -fpic -o test3.so test3.c603

$ readelf -S test3.so | grep ’ˆ \[’604

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al605

[0] NULL 00000000 000000 000000 00 0 0 0606

[1] .hash HASH 000000b4 0000b4 00092c 04 A 2 0 4607

[2] .dynsym DYNSYM 000009e0 0009e0 001420 10 A 3 c 4608

[3] .dynstr STRTAB 00001e00 001e00 000735 00 A 0 0 1609

[4] .rel.dyn REL 00002538 002538 000968 08 A 2 0 4610

Jakub Jelı́nek Draft 0.7 13

Dra
ft

[5] .text PROGBITS 00002ea0 002ea0 000000 00 AX 0 0 4611

[6] ro_seg_end PROGBITS 00002ea0 002ea0 000000 00 A 0 0 1612

[7] .data PROGBITS 00003000 003000 0004b4 00 WA 0 0 4613

[8] .dynamic DYNAMIC 000034b4 0034b4 000070 08 WA 3 0 4614

[9] .got PROGBITS 00003524 003524 00000c 04 WA 0 0 4615

[10] .bss NOBITS 00003540 003540 000a88 00 WA 0 0 32616

[11] .comment PROGBITS 00000000 003540 000033 00 0 0 1617

[12] .shstrtab STRTAB 00000000 003573 00006d 00 0 0 1618

[13] .symtab SYMTAB 00000000 003838 001460 10 14 10 4619

[14] .strtab STRTAB 00000000 004c98 000742 00 0 0 1620

$ readelf -l test3.so | grep LOAD621

LOAD 0x000000 0x00000000 0x00000000 0x02ea0 0x02ea0 R E 0x1000622

LOAD 0x003000 0x00003000 0x00003000 0x00530 0x00fc8 RW 0x1000623

$ prelink -N ./test3.so624

$ readelf -l test3.so | grep LOAD625

LOAD 0x000000 0x02000000 0x02000000 0x03ea0 0x03ea0 R E 0x1000626

LOAD 0x004000 0x02004000 0x02004000 0x00530 0x00fc8 RW 0x1000627

$ readelf -S test3.so | grep ’ˆ \[’628

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al629

[0] NULL 00000000 000000 000000 00 0 0 0630

[1] .hash HASH 020000b4 0000b4 00092c 04 A 2 0 4631

[2] .dynsym DYNSYM 020009e0 0009e0 001420 10 A 3 c 4632

[3] .dynstr STRTAB 02001e00 001e00 000735 00 A 0 0 1633

[4] .rel.dyn RELA 02002538 002538 000e1c 0c A 2 0 4634

[5] .text PROGBITS 02003ea0 003ea0 000000 00 AX 0 0 4635

[6] ro_seg_end PROGBITS 02003ea0 003ea0 000000 00 A 0 0 1636

[7] .data PROGBITS 02004000 004000 0004b4 00 WA 0 0 4637

[8] .dynamic DYNAMIC 020044b4 0044b4 000070 08 WA 3 0 4638

[9] .got PROGBITS 02004524 004524 00000c 04 WA 0 0 4639

[10] .bss NOBITS 02004540 004540 000a88 00 WA 0 0 32640

[11] .comment PROGBITS 00000000 004540 000033 00 0 0 1641

[12] .gnu.liblist GNU_LIBLIST 00000000 004573 000000 14 13 0 4642

[13] .gnu.libstr STRTAB 00000000 004573 000000 00 0 0 1643

[14] .gnu.prelink_undo PROGBITS 00000000 004574 0002e4 01 0 0 4644

[15] .shstrtab STRTAB 00000000 00485b 000098 00 0 0 1645

[16] .symtab SYMTAB 00000000 004bc8 001460 10 17 10 4646

[17] .strtab STRTAB 00000000 006028 000742 00 0 0 1647

Listing 5: Growing read-only segment if page padding needed

In the last example the distance betweenPT LOADsegments is very small, just0x160 bytes and the adjustment had to648

be done by 4096 bytes.649

8 Conflicts

As said earlier, if symbol lookup of some symbol in particular shared library results in different values when that650

shared library’s natural search scope is used and when using search scope of the application the DSO is used in, this is651

considered aconflict. Here is an example of a conflict on IA-32:652

$ cat > test1.c <<EOF653

int i;654

int *j = &i;655

int *foo (void) { return &i; }656

EOF657

$ cat > test2.c <<EOF658

int i;659

int *k = &i;660

int *bar (void) { return &i; }661

EOF662

$ cat > test.c <<EOF663

14 Draft 0.7 Prelink

Dra
ft
�����
�����
�����

�����
�����
�����

.hashdynstr .rel.dyn .text ... ro_seg_end .datagot .bss

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

.hashdynstr .rel.dyn .text ... ro_seg_end

page boundary page boundary

.datagot .bss

.hashdynstr .rel.dyn .text ... ro_seg_end .datagot .bss

This page needs to be mapped from 2 sources

And not:

Figure 3: Growing read-only segment if page padding needed

#include <stdio.h>664

extern int i, *j, *k, *foo (void), bar (void);665

int main (void)666

{667

#ifdef PRINT_I668

printf ("%p\n", &i);669

#endif670

printf ("%p %p %p %p\n", j, k, foo (), bar ());671

}672

EOF673

$ gcc -nostdlib -shared -fpic -s -o test1.so test1.c674

$ gcc -nostdlib -shared -fpic -o test2.so test2.c ./test1.so675

$ gcc -o test test.c ./test2.so ./test1.so676

$./test677

0x16137c 0x16137c 0x16137c 0x16137c678

$ readelf -r ./test1.so679

680

Relocation section ’.rel.dyn’ at offset 0x2bc contains 2 entries:681

Offset Info Type Sym.Value Sym. Name682

000012e4 00000d01 R_386_32 00001368 i683

00001364 00000d06 R_386_GLOB_DAT 00001368 i684

$ prelink -N ./test ./test1.so ./test2.so685

$ LD_WARN= LD_TRACE_PRELINKING=1 LD_BIND_NOW=1 /lib/ld-linux.so.2 ./test1.so686

./test1.so => ./test1.so (0x04db6000, 0x00000000)687

$ LD_WARN= LD_TRACE_PRELINKING=1 LD_BIND_NOW=1 /lib/ld-linux.so.2 ./test2.so688

./test2.so => ./test2.so (0x04dba000, 0x00000000)689

./test1.so => ./test1.so (0x04db6000, 0x00000000)690

$ LD_WARN= LD_TRACE_PRELINKING=1 LD_BIND_NOW=1 /lib/ld-linux.so.2 ./test \691

| sed ’s/ˆ[[:space:]]*/ /’692

./test => ./test (0x08048000, 0x00000000)693

./test2.so => ./test2.so (0x04dba000, 0x00000000)694

./test1.so => ./test1.so (0x04db6000, 0x00000000)695

libc.so.6 => /lib/tls/libc.so.6 (0x00b22000, 0x00000000) TLS(0x1, 0x00000028)696

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00b0a000, 0x00000000)697

$ readelf -S ./test1.so | grep ’\.data\|\.got’698

[6] .data PROGBITS 04db72e4 0002e4 000004 00 WA 0 0 4699

[8] .got PROGBITS 04db7358 000358 000010 04 WA 0 0 4700

Jakub Jelı́nek Draft 0.7 15

Dra
ft

$ readelf -r ./test1.so701

702

Relocation section ’.rel.dyn’ at offset 0x2bc contains 2 entries:703

Offset Info Type Sym.Value Sym. Name704

04db72e4 00000d06 R_386_GLOB_DAT 04db7368 i705

04db7364 00000d06 R_386_GLOB_DAT 04db7368 i706

$ objdump -s -j .got -j .data test1.so707

708

test1.so: file format elf32-i386709

710

Contents of section .data:711

4db72e4 6873db04 hs..712

Contents of section .got:713

4db7358 e8120000 00000000 00000000 6873db04hs..714

$ readelf -r ./test | sed ’/\.gnu\.conflict/,$!d’715

Relocation section ’.gnu.conflict’ at offset 0x7ac contains 18 entries:716

Offset Info Type Sym.Value Sym. Name + Addend717

04db72e4 00000001 R_386_32 04dbb37c718

04db7364 00000001 R_386_32 04dbb37c719

00c56874 00000001 R_386_32 fffffff0720

00c56878 00000001 R_386_32 00000001721

00c568bc 00000001 R_386_32 fffffff4722

00c56900 00000001 R_386_32 ffffffec723

00c56948 00000001 R_386_32 ffffffdc724

00c5695c 00000001 R_386_32 ffffffe0725

00c56980 00000001 R_386_32 fffffff8726

00c56988 00000001 R_386_32 ffffffe4727

00c569a4 00000001 R_386_32 ffffffd8728

00c569c4 00000001 R_386_32 ffffffe8729

00c569d8 00000001 R_386_32 080485b8730

00b1f510 00000007 R_386_JUMP_SLOT 00b91460731

00b1f514 00000007 R_386_JUMP_SLOT 00b91080732

00b1f518 00000007 R_386_JUMP_SLOT 00b91750733

00b1f51c 00000007 R_386_JUMP_SLOT 00b912c0734

00b1f520 00000007 R_386_JUMP_SLOT 00b91200735

$./test736

0x4dbb37c 0x4dbb37c 0x4dbb37c 0x4dbb37c737

Listing 6: Conflict example

In the example, among some conflicts caused by the dynamic linker and the C library,13 there is a conflict for the738

symboli in test1.so shared library.test1.so has just itself in its natural symbol lookup scope (as proved by739

LD WARN= LDTRACEPRELINKING=1 LD BIND NOW=1 /lib/ld-linux.so.2 ./test1.so740

command output), so when looking up symboli in this scope the definition intest1.so is chosen.test1.so has741

two relocations against the symboli, oneR 386 32 against.data section and oneR 386 GLOBDAT against.got742

section. When prelinkingtest1.so library, the dynamic linker stores the address ofi (0x4db7368) into both locations743

(at offsets 0x4db72e4 and 0x4db7364). The global symbol search scope intest executable contains the executable744

itself, test2.so andtest1.so libraries,libc.so.6 and the dynamic linker in the listed order. When doing symbol745

lookup for symboli in test1.so when doing relocation processing of the whole executable, address ofi in test2.so746

is returned as that symbol comes earlier in the global search scope. So, when none of the libraries nor the executable747

is prelinked, the program prints 4 identical addresses. If prelink didn’t create conflict fixups for the two relocations748

against the symboli in test1.so , prelinked executable (which bypasses normal relocation processing on startup)749

would print instead of the desired750

0x4dbb37c 0x4dbb37c 0x4dbb37c 0x4dbb37c751

13Particularly in the example, the 5R 386 JUMPSLOTfixups arePLT slots in the dynamic linker for memory allocator functions resolving to
C library functions instead of dynamic linker’s own trivial implementation. First 10R 386 32 fixups at offsets 0xc56874 to 0xc569c4 are Thread
Local Storage fixups in the C library and the fixup at 0xc569d8 is forIO stdin used weak undefined symbol in the C library, resolving to a symbol
with the same name in the executable.

16 Draft 0.7 Prelink

Dra
ft

different addresses,752

0x4db7368 0x4dbb37c 0x4db7368 0x4dbb37c753

That is a functionality change thatprelink cannot be permitted to make, so instead it fixes up the two locations by754

storing the desired value in there. In this caseprelink really cannot avoid that -test1.so shared library could755

be also used withouttest2.so in some other executable’s symbol search scope. Or there could be some executable756

linked with:757

$ gcc -o test2 test.c ./test1.so ./test2.so758

Listing 7: Conflict example with swapped order of libraries

wherei lookup in test1.so andtest2.so is supposed to resolve toi in test1.so .759

Now consider what happens if the executable is linked with-DPRINT I :760

$ gcc -DPRINT_I -o test3 test.c ./test2.so ./test1.so761

$./test3762

0x804972c763

0x804972c 0x804972c 0x804972c 0x804972c764

$ prelink -N ./test3 ./test1.so ./test2.so765

$ readelf -S ./test2.so | grep ’\.data\|\.got’766

[6] .data PROGBITS 04dbb2f0 0002f0 000004 00 WA 0 0 4767

[8] .got PROGBITS 04dbb36c 00036c 000010 04 WA 0 0 4768

$ readelf -r ./test2.so769

770

Relocation section ’.rel.dyn’ at offset 0x2c8 contains 2 entries:771

Offset Info Type Sym.Value Sym. Name772

04dbb2f0 00000d06 R_386_GLOB_DAT 04dbb37c i773

04dbb378 00000d06 R_386_GLOB_DAT 04dbb37c i774

$ objdump -s -j .got -j .data test2.so775

776

test2.so: file format elf32-i386777

778

Contents of section .data:779

4dbb2f0 7cb3db04 |...780

Contents of section .got:781

4dbb36c f4120000 00000000 00000000 7cb3db04|...782

$ readelf -r ./test3783

784

Relocation section ’.rel.dyn’ at offset 0x370 contains 4 entries:785

Offset Info Type Sym.Value Sym. Name786

08049720 00000e06 R_386_GLOB_DAT 00000000 __gmon_start__787

08049724 00000105 R_386_COPY 08049724 j788

08049728 00000305 R_386_COPY 08049728 k789

0804972c 00000405 R_386_COPY 0804972c i790

791

Relocation section ’.rel.plt’ at offset 0x390 contains 4 entries:792

Offset Info Type Sym.Value Sym. Name793

08049710 00000607 R_386_JUMP_SLOT 080483d8 __libc_start_main794

08049714 00000707 R_386_JUMP_SLOT 080483e8 printf795

08049718 00000807 R_386_JUMP_SLOT 080483f8 foo796

0804971c 00000c07 R_386_JUMP_SLOT 08048408 bar797

798

Relocation section ’.gnu.conflict’ at offset 0x7f0 contains 20 entries:799

Offset Info Type Sym.Value Sym. Name + Addend800

04dbb2f0 00000001 R_386_32 0804972c801

Jakub Jelı́nek Draft 0.7 17

Dra
ft

04dbb378 00000001 R_386_32 0804972c802

04db72e4 00000001 R_386_32 0804972c803

04db7364 00000001 R_386_32 0804972c804

00c56874 00000001 R_386_32 fffffff0805

00c56878 00000001 R_386_32 00000001806

00c568bc 00000001 R_386_32 fffffff4807

00c56900 00000001 R_386_32 ffffffec808

00c56948 00000001 R_386_32 ffffffdc809

00c5695c 00000001 R_386_32 ffffffe0810

00c56980 00000001 R_386_32 fffffff8811

00c56988 00000001 R_386_32 ffffffe4812

00c569a4 00000001 R_386_32 ffffffd8813

00c569c4 00000001 R_386_32 ffffffe8814

00c569d8 00000001 R_386_32 080485f0815

00b1f510 00000007 R_386_JUMP_SLOT 00b91460816

00b1f514 00000007 R_386_JUMP_SLOT 00b91080817

00b1f518 00000007 R_386_JUMP_SLOT 00b91750818

00b1f51c 00000007 R_386_JUMP_SLOT 00b912c0819

00b1f520 00000007 R_386_JUMP_SLOT 00b91200820

$./test3821

0x804972c822

0x804972c 0x804972c 0x804972c 0x804972c823

Listing 8: Conflict example with COPY relocation for conflicting symbol

Because the executable is not compiled as position independent code andmain function takes address ofi variable,824

the object file fortest3.c contains aR 386 32 relocation againsti. The linker cannot make dynamic relocations825

against read-only segment in the executable, so the address ofi must be constant. This is accomplished by creating a826

new objecti in the executable’s.dynbss section and creating a dynamicR 386 COPYrelocation for it. The relocation827

ensures that during startup the content ofi object earliest in the search scope without the executable is copied to thisi828

object in executable. Now, unliketest executable, intest3 executablei lookups in bothtest1.so andtest2.so829

libraries result in address ofi in the executable (instead oftest2.so). This means that two conflict fixups are needed830

again fortest1.so (but storing 0x804972c instead of 0x4dbb37c) and two new fixups are needed fortest2.so .831

If the executable is compiled as position independent code,832

$ gcc -fpic -DPRINT_I -o test4 test.c ./test2.so ./test1.so833

$./test4834

0x4dbb37c835

0x4dbb37c 0x4dbb37c 0x4dbb37c 0x4dbb37c836

Listing 9: Conflict example with position independent code in the executable

the address ofi is stored in executable’s.got section, which is writable and thus can have dynamic relocation against it.837

So the linker creates aR 386 GLOBDATrelocation against the.got section, the symboli is undefined in the executable838

and no copy relocations are needed. In this case, onlytest1.so will need 2 fixups,test2.so will not need any.839

There are various reasons for conflicts:840

• Improperly linked shared libraries. If a shared library always needs symbols from some particular shared library,841

it should be linked against that library, usually by adding-lLIBNAME to gcc -shared command line used842

during linking of the shared library. This both reduces conflict fixups inprelink and makes the library easier843

to load usingdlopen , because applications don’t have to remember that they have to load some other library844

first. The best place to record the dependency is in the shared library itself. Another reason is if the needed845

library uses symbol versioning for its symbols. Not linking against that library can result in malfunctioning846

shared library.Prelink issues a warning for such libraries -Warning: library has undefined non-weak847

18 Draft 0.7 Prelink

Dra
ft

symbols . When linking a shared library, the-Wl,-z,defs option can be used to ensure there are no such848

undefined non-weak symbols. There are exceptions, when undefined non-weak symbols in shared libraries are849

desirable. One exception is when there are multiple shared libraries providing the same functionality, and a850

shared library doesn’t care which one is used. An example can be e.g.libreadline.so.4 , which needs some851

terminal handling functions, which are provided be eitherlibtermcap.so.2 , or libncurses.so.5 . Another852

exception is with plugins or other shared libraries which expect some symbols to be resolved to symbols defined853

in the executable.854

• A library overriding functionality of some other library. One example is e.g. C library and POSIX thread library.855

Older versions of the GNU C library did not provide cancelable entry points required by the standard. This is not856

needed for non-threaded applications. So only thelibpthread.so.0 shared library which provides POSIX857

threading support then overrode the cancellation entry points required by the standard by wrapper functions858

which provided the required functionality. Although most recent versions of the GNU C library handle can-859

cellation even in entry points inlibc.so.6 (this was needed for cases whenlibc.so.6 comes earlier before860

libpthread.so.0 in symbol search scope and used to be worked around by non-standard handling of weak861

symbols in the dynamic linker), because of symbol versioning the symbols had to stay inlibpthread.so.0 as862

well as inlibc.so.6 . This means every program using POSIX threads on Linux will have a couple of conflict863

fixups because of this.864

• Programs which need copy relocations. Althoughprelink will resolve the copy relocations at prelinking time,865

if any shared library has relocations against the symbol which needed copy relocation, all such relocations will866

need conflict fixups. Generally, it is better to not export variables from shared libraries in their APIs, instead867

provide accessor functions.868

• Function pointer equality requirement for functions called from executables. When address of some global869

function is taken, at least C and C++ require that this pointer is the same in the whole program. Executables870

typically contain position dependent code, so when code in the executable takes address of some function not871

defined in the executable itself, that address must be link time constant. Linker accomplishes this by creating a872

PLT slot for the function unless there was one already and resolving to the address ofPLT slot. The symbol for873

the function is created withst value equal to address of thePLT slot, butst shndx set toSHNUNDEF. Such874

symbols are treated specially by the dynamic linker, in thatPLT relocations resolve to first symbol in the global875

search scope after the executable, while symbol lookups for all other relocation types return the address of the876

symbol in the executable. Unfortunately, GNU linker doesn’t differentiate between taking address of a function877

in an executable (especially one for which no dynamic relocation is possible in case it is in read-only segment)878

and just calling the function, but never taking its address. If it cleared thest value field of theSHNUNDEF879

function symbols in case nothing in the executable takes the function’s address, severalprelink conflict could880

disappear (SHNUNDEFsymbols withst value set to 0 are treated always as real undefined symbols by the881

dynamic linker).882

• COMDATcode and data in C++. C++ language has several places where it may need to emit some code or data883

without a clear unique compilation unit owning it. Examples include taking address of aninline function, local884

static variable ininline functions, virtual tables for some classes (this depends on#pragma interface or885

#pragma implementation presence, presence of non-inline non-pure-virtual member function in the class,886

etc.),RTTI info for them. Compilers and linkers handle these using variousCOMDATschemes, e.g. GNU linker’s887

.gnu.linkonce* special sections or usingSHT GROUP. Unfortunately, all these duplicate merging schemes888

work only during linking of shared libraries or executables, no duplicate removal is done across shared libraries.889

Shared libraries typically have relocations against theirCOMDATcode or data objects (otherwise they wouldn’t be890

at least in most cases emitted at all), so if there areCOMDATduplicates across shared libraries or the executable,891

they lead to conflict fixups. The linker theoretically could try to mergeCOMDATduplicates across shared libraries892

if specifically requested by the user (if aCOMDATsymbol is already present in one of the dependent shared893

libraries and isSTB WEAK, the linker could skip it). Unfortunately, this only works as long as the user has full894

control over the dependent shared libraries, because theCOMDATsymbol could be exported from them just as a895

side effect of their implementation (e.g. they use some class internally). When such libraries are rebuilt even896

with minor changes in their implementation (unfortunately with C++ shared libraries it is usually not very clear897

what part is exported ABI and what is not), some of thoseCOMDATsymbols in them could go away (e.g. because898

suddenly they use a different class internally and the previously used class is not referenced anywhere). When899

COMDATobjects are not merged across shared libraries, this makes no problems, as each library which needs the900

COMDAThas its own copy. But withCOMDATduplicate removal between shared libraries there could suddenly be901

unresolved references and the shared libraries would need to be relinked. The only place where this could work902

safely is when a single package includes several C++ shared libraries which depend on each other. They are then903

shipped always together and when one changes, all others need changing too.904

Jakub Jelı́nek Draft 0.7 19

Dra
ft

9 Prelink optimizations to reduce number of conflict fixups

Prelink can optimize out some conflict fixups if it can prove that the changes are not observable by the application905

at runtime (opening its executable and reading it doesn’t count). If there is a data object in some shared library with906

a symbol that is overridden by a symbol in a different shared library earlier in global symbol lookup scope or in907

the executable, then that data object is likely never referenced and it shouldn’t matter what it contains. Examine the908

following example:909

$ cat > test1.c <<EOF910

int i, j, k;911

struct A { int *a; int *b; int *c; } x = { &i, &j, &k };912

struct A *y = &x;913

EOF914

$ cat > test2.c <<EOF915

int i, j, k;916

struct A { int *a; int *b; int *c; } x = { &i, &j, &k };917

struct A *z = &x;918

EOF919

$ cat > test.c <<EOF920

#include <stdio.h>921

extern struct A { int *a; int *b; int *c; } *y, *z;922

int main (void)923

{924

printf ("%p: %p %p %p\n", y, y->a, y->b, y->c);925

printf ("%p: %p %p %p\n", z, z->a, z->b, z->c);926

}927

EOF928

$ gcc -nostdlib -shared -fpic -s -o test1.so test1.c929

$ gcc -nostdlib -shared -fpic -o test2.so test2.c ./test1.so930

$ gcc -o test test.c ./test2.so ./test1.so931

$./test932

0xaf3314: 0xaf33b0 0xaf33a8 0xaf33ac933

0xaf3314: 0xaf33b0 0xaf33a8 0xaf33ac934

Listing 10: C example where conflict fixups could be optimized out

In this example there are 3 conflict fixups pointing into the 12 byte longx object intest1.so shared library (among935

other conflicts). And nothing in the program can poke atx content intest1.so , simply because it has to look at it936

throughx symbol which resolves totest2.so . So in this caseprelink could skip those 3 conflicts. Unfortunately it937

is not that easy:938

$ cat > test3.c <<EOF939

int i, j, k;940

static struct A { int *a; int *b; int *c; } local = { &i, &j, &k };941

extern struct A x;942

struct A *y = &x;943

struct A *y2 = &local;944

extern struct A x __attribute__((alias ("local")));945

EOF946

$ cat > test4.c <<EOF947

#include <stdio.h>948

extern struct A { int *a; int *b; int *c; } *y, *y2, *z;949

int main (void)950

{951

printf ("%p: %p %p %p\n", y, y->a, y->b, y->c);952

printf ("%p: %p %p %p\n", y2, y2->a, y2->b, y2->c);953

printf ("%p: %p %p %p\n", z, z->a, z->b, z->c);954

}955

20 Draft 0.7 Prelink

Dra
ft

EOF956

$ gcc -nostdlib -shared -fpic -s -o test3.so test3.c957

$ gcc -nostdlib -shared -fpic -o test4.so test2.c ./test3.so958

$ gcc -o test4 test4.c ./test4.so ./test3.so959

$./test4960

0x65a314: 0x65a3b0 0x65a3a8 0x65a3ac961

0xbd1328: 0x65a3b0 0x65a3a8 0x65a3ac962

0x65a314: 0x65a3b0 0x65a3a8 0x65a3ac963

Listing 11: Modified C example where conflict fixups cannot be removed

In this example, there are again 3 conflict fixups pointing into the 12 byte longx object intest3.so shared library.964

The fact that variable local is located at the same 12 bytes is totally invisible to prelink, as local is aSTB LOCALsymbol965

which doesn’t show up in.dynsym section. But if those 3 conflict fixups are removed, then suddenly program’s966

observable behavior changes (the last 3 addresses on second line would be different than those on first or third line).967

Fortunately, there are at least some objects whereprelink can be reasonably sure they will never be referenced968

through some local alias. Those are various compiler generated objects with well defined meaning which isprelink969

able to identify in shared libraries. The most important ones are C++ virtual tables andRTTI data. They are emitted970

as COMDAT data by the compiler, in GCC into.gnu.linkonce.d.* sections. Data or code in these sections can971

be accessed only through global symbols, otherwise linker might create unexpected results when two or more of these972

sections are merged together (all but one deleted). Whenprelink is checking for such data, it first checks whether the973

shared library in question is linked againstlibstdc++.so . If not, it is not a C++ library (or incorrectly built one) and974

thus it makes no sense to search any further. It looks only in.data section, forSTB WEAK STTOBJECTsymbols whose975

names start with certain prefixes14 and where no other symbols (in dynamic symbol table) point into the objects. If976

these objects are unused because there is a conflict on their symbol, all conflict fixups pointing into the virtual table or977

RTTI structure can be discarded.978

Another possible optimization is again related to C++ virtual tables. Function addresses in them are not intended for979

pointer comparisons. C++ code only loads them from the virtual tables and calls through the pointer. Pointers to980

member functions are handled differently. As pointer equivalence is the only reason why all function pointers resolve981

to PLT slots in the executable even when the executable doesn’t include implementation of the function (i.e. has982

SHNUNDEFsymbol with non-zerost value pointing at thePLT slot in the executable),prelink can resolve method983

addresses in virtual tables to the actual method implementation. In many cases this is in the same library as the virtual984

table (or in one of libraries in its natural symbol lookup scope), so a conflict fixup is unnecessary. This optimization985

speeds up programs also after control is transfered to the application and not just the time to start up the application,986

although just a few cycles per method call.987

The conflict fixup reduction is quite big on some programs. Below is statistics forkmail program on completely988

unprelinked box:989

$ LD_DEBUG=statistics /usr/bin/kmail 2>&1 | sed ’2,8!d;s/ˆ *//’990

10621: total startup time in dynamic loader: 240724867 clock cycles991

10621: time needed for relocation: 234049636 clock cycles (97.2%)992

10621: number of relocations: 34854993

10621: number of relocations from cache: 74364994

10621: number of relative relocations: 35351995

10621: time needed to load objects: 6241678 clock cycles (2.5%)996

$ ls -l /usr/bin/kmail997

-rwxr-xr-x 1 root root 2149084 Oct 2 12:05 /usr/bin/kmail998

$ (Xvfb :3 &) >/dev/null 2>&1 </dev/null; sleep 20999

$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10; killall kmail1000

$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 101001

$ cat /proc/‘/sbin/pidof kmail‘/statm1002

4164 4164 3509 224 33 3907 6551003

$ killall Xvfb kdeinit kmail1004

14 vt for GCC 2.95.x and 2.96-RH virtual tables,ZTV for GCC 3.x virtual tables andZTI for GCC 3.xRTTI data.

Jakub Jelı́nek Draft 0.7 21

Dra
ft

Listing 12: Statistics for unprelinkedkmail

statm special file for a process contains its memory statistics. The numbers in it mean in order total number of used1005

pages (on IA-32 Linux a page is 4KB), number of resident pages (i.e. not swapped out), number of shared pages,1006

number of text pages, number of library pages, number of stack and other pages and number of dirty pages used by1007

the process. Distinction between text and library pages is very rough, so those numbers aren’t that much useful. Of1008

interest are mainly first number, third number and last number.1009

Statistics forkmail on completely prelinked box:1010

$ LD_DEBUG=statistics /usr/bin/kmail 2>&1 | sed ’2,8!d;s/ˆ *//’1011

14864: total startup time in dynamic loader: 8409504 clock cycles1012

14864: time needed for relocation: 3024720 clock cycles (35.9%)1013

14864: number of relocations: 01014

14864: number of relocations from cache: 89611015

14864: number of relative relocations: 01016

14864: time needed to load objects: 4897336 clock cycles (58.2%)1017

$ ls -l /usr/bin/kmail1018

-rwxr-xr-x 1 root root 2269500 Oct 2 12:05 /usr/bin/kmail1019

$ (Xvfb :3 &) >/dev/null 2>&1 </dev/null; sleep 201020

$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10; killall kmail1021

$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 101022

$ cat /proc/‘/sbin/pidof kmail‘/statm1023

3803 3803 3186 249 33 3521 6171024

$ killall Xvfb kdeinit kmail1025

Listing 13: Statistics for prelinkedkmail

Statistics forkmail on completely prelinked box with C++ conflict fixup optimizations turned off:1026

$ LD_DEBUG=statistics /usr/bin/kmail 2>&1 | sed ’2,8!d;s/ˆ *//’1027

20645: total startup time in dynamic loader: 9704168 clock cycles1028

20645: time needed for relocation: 4734715 clock cycles (48.7%)1029

20645: number of relocations: 01030

20645: number of relocations from cache: 598711031

20645: number of relative relocations: 01032

20645: time needed to load objects: 4487971 clock cycles (46.2%)1033

ls -l /usr/bin/kmail1034

-rwxr-xr-x 1 root root 2877360 Oct 2 12:05 /usr/bin/kmail1035

$ (Xvfb :3 &) >/dev/null 2>&1 </dev/null; sleep 201036

$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10; killall kmail1037

$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 101038

$ cat /proc/‘/sbin/pidof kmail‘/statm1039

3957 3957 3329 398 33 3526 6281040

$ killall Xvfb kdeinit kmail1041

Listing 14: Statistics for prelinkedkmail without conflict fixup reduction

On this application, C++ conflict fixup optimizations saved 50910 unneeded conflict fixups, speeded up startup by1042

13.3% and decreased number of dirty pages by 11, which means the application needs 44KB less memory per-process.1043

10 Thread Local Storage support

Thread Local Storage ([12], [13], [14]) support has been recently added to GCC, GNU binutils and GNU C Li-1044

brary. TLS support is a set of new relocations which together with dynamic linker and POSIX thread library addi-1045

22 Draft 0.7 Prelink

Dra
ft

tions provide faster and easier to use alternative to traditional POSIX thread local data API (pthread getspecific ,1046

pthread setspecific , pthread key *).1047

TLS necessitated several changes toprelink . Thread Local symbols (with typeSTT TLS) must not be relocated, as1048

they are relative to the start ofPT TLS segment and thus not virtual addresses. The dynamic linker had to be enhanced1049

so that it tellsprelink atLD TRACEPRELINKING time whatTLS module IDs have been assigned and what addresses1050

relative to start ofTLS block have been given toPT TLS segment of each library or executable. There are 3 classes of1051

newTLS dynamic relocationsprelink is interested in (with different names on different architectures).1052

In first class are module ID relocations, which are used forTLS Global Dynamic and Local Dynamic models (for Global1053

Dynamic model they are supposed to resolve to module ID of the executable or shared library of particularSTT TLS1054

symbol, for Local Dynamic model this resolves to module ID of the containing shared library). These relocations are1055

hard to prelink in any useful way without movingTLS module ID assignment from the dynamic linker toprelink .1056

Although prelink can find out what shared library will contain particularSTT TLS symbol unless there will be1057

conflicts for that symbol, it doesn’t know how many shared libraries withPT TLS segment will precede it or whether1058

executable will or will not havePT TLS segment. UntilTLS is widely deployed by many libraries,prelink could1059

guess that onlylibc.so will have PT TLS and store 1 (first module ID the dynamic linker assigns), but given that1060

libc.so uses just one such relocation it is not probably worth doing this when soon other shared libraries besides1061

libc.so andlibGL.so start using it heavily. Because of thisprelink doesn’t do anything special when prelinking1062

shared libraries with these relocations and for each relocations in this class creates one conflict fixup.1063

In second class are relocations which resolve tost value of someSTT TLS symbol. These relocations are used in1064

Global DynamicTLS model (in Local Dynamic they are resolved at link time already) and fromprelink point of1065

view they are much more similar to normal relocations than the other two classes. When theSTT TLS symbol is looked1066

up successfully in shared library’s natural search scope,prelink just stores itsst value into the relocation. The1067

chances there will be a conflict are even smaller than with normal symbol lookups, since overloadingTLS symbols1068

means wasted memory in each single thread and thus library writers will try to avoid it if possible.1069

The third class includes relocations which resolve to offsets within program’s initialTLS block 15 Relocation in this1070

class are used in Initial ExecTLS model (or in Local Exec model if this model is supported in shared libraries). These1071

offsets are even harder to predict than module IDs and unlike module IDs it wouldn’t be very helpful if they were1072

assigned byprelink instead of dynamic linker (which would just read them from some dynamic tag). That’s because1073

TLS block needs to be packed tightly and any assignments inprelink couldn’t take into account other shared libraries1074

linked into the same executable and the executable itself. Similarly to module ID relocations,prelink doesn’t do1075

anything about them when prelinking shared libraries and for each such relocation creates a conflict fixup.1076

11 Prelinking of executables and shared libraries

Rewriting of executables is harder than for shared libraries, both because there are more changes necessary and because1077

shared libraries are relocatable and thus have dynamic relocations for all absolute addresses.1078

After collecting all information from the dynamic linker and assigning virtual address space slots to all shared libraries,1079

prelinking of shared libraries involves following steps:1080

• Relocation of the shared library to the assigned base address.1081

• REL to RELAconversion if needed (the only step which changes sizes of allocated sections in the middle).1082

• On architectures which haveSHT NOBITS .plt sections, before relocations are applied the section needs to1083

be converted toSHT PROGBITS. As the section needs to be at the end (or after it) of file backed part of some1084

PT LOADsegment, this just means that the file backed up part needs to be enlarged, the file filled with zeros1085

and all following section file offsets or program header entry file offsets adjusted. AllSHT NOBITS sections in1086

the samePT LOADsegment with virtual addresses lower than the.plt start address need to be converted from1087

SHT NOBITS to SHT PROGBITStoo. Without making the sectionSHT PROGBITS, prelink cannot apply relo-1088

cations against it as such sections contain only zeros. Architectures withSHT NOBITS .plt section supported1089

by prelink are PowerPC and PowerPC64.1090

15Negative on architectures which haveTLS block immediately below thread pointer (e.g. IA-32, AMD64, SPARC, S/390) and positive on
architectures which haveTLS block at thread pointer or a few bytes above it (e.g. PowerPC, Alpha, IA-64, SuperH).

Jakub Jelı́nek Draft 0.7 23

Dra
ft

• Applying relocations. For each dynamic relocation in the shared library, address of relocation’s symbol looked1091

up in natural symbol lookup search scope of the shared library (or 0 if the symbol is not found in that search1092

scope) is stored in an architecture and relocation type dependent way to memory pointed byr offset field of1093

the relocation. This step uses symbol lookup information provided by dynamic linker.1094

• Addition or modification ofDT CHECKSUMand DT GNUPRELINKED dynamic tags. 16 The former is set to1095

checksum of allocated sections in the shared library, the latter to time of prelinking.1096

• On architectures which don’t use writable.plt , but instead use.got.plt (this section is merged during linking1097

into .got) section,prelink typically stores address into the first PLT slot in.plt section to the reserved1098

second word of.got section. On these architectures, the dynamic linker has to initialize.plt section if lazy1099

binding. On non-prelinked executables or shared libraries this typically means adding load offset to the values1100

in .got.plt section, for prelinked shared libraries or executables if prelinking information cannot be used it1101

needs to compute the right values in.got.plt section without looking at this section’s content (since it contains1102

prelinking information). The second word in.got section is used for this computation.1103

• Addition of .gnu prelink undo unallocated section if not present yet. This section is used byprelink inter-1104

nally during undo operation.1105

• Addition of .gnu liblist and.gnu libstr unallocated sections or, if they are already present, their update1106

including possible growing or shrinking. These sections are used only byprelink to compare the dependent1107

libraries (and their order) at the time when the shared library was prelinked against current dependencies. If a1108

shared library has no dependencies (e.g. dynamic linker), these sections are not present.1109

Adding or resizing unallocated section needs just file offsets of following unallocated sections recomputed (ensuring1110

proper alignment), growing section header table and.shstrtab and adding new section names to that section.1111

Prelinking of executables involves following steps:1112

• REL to RELAconversion if needed.1113

• SHT NOBITS to SHT PROGBITSconversion of.plt section if needed.1114

• Applying relocations.1115

• Addition or resizing of allocated.gnu.conflict section containing list of conflict fixups.1116

• Addition or resizing of allocated.gnu.liblist section which is used by the dynamic linker at runtime to see1117

if none of the dependencies changed or were reordered. If they were, it continues normal relocation processing,1118

otherwise they can be skipped and only conflict fixups applied.1119

• Growing of allocated.dynstr section, where strings referenced from.gnu.liblist section need to be added.1120

• If there are any COPY relocations (whichprelink wants to handle rather than deferring them as conflict fixups1121

to runtime), they need to be applied.1122

• Modifying second word in.got section for.got.plt using architectures.1123

• Addition or adjusting of dynamic tags which allow the dynamic linker to find the.gnu.liblist and.gnu.conflict1124

sections and their sizes.DT GNUCONFLICT andDT GNUCONFLICTSZshould be present if there are any con-1125

flict fixups. It should contain the virtual address of the.gnu.conflict section start resp. its size in bytes.1126

DT GNULIBLIST andDT GNULIBLISTSZ need to be present in all prelinked executables and must be equal the1127

to virtual address of the.gnu.liblist section and its size in bytes.1128

• Addition of .gnu prelink undo unallocated section if not present.1129

Executables can have absolute relocations already applied (and without a dynamic relocation) to virtually any allocated1130

SHT PROGBITSsection17, against almost all allocatedSHT PROGBITSandSHT NOBITS sections. This means that1131

when growing, adding or shrinking allocated sections in executables, allSHT PROGBITSand SHT NOBITS section1132

16Prelink is not able to grow.dynamic section, so it needs some spare dynamic tags (DTNULL) at the end of.dynamic section.
GNU linker versions released after August 2001 leave space by default.

17One exception is.interp special section. It shouldn’t have relocations applied to it, nor any other section should reference it.

24 Draft 0.7 Prelink

Dra
ft

must keep their original virtual addresses and sizes18. Prelink tries various places where to put allocated sections1133

which were added or grew:1134

• In the unlikely case if there is already some gap between sections in read-onlyPT LOADsegment where the1135

section fits.1136

• If the SHT NOBITS sections are small enough to fit into a page together with the precedingSHT PROGBITS1137

section and there is still some space in the page after theSHT NOBITS sections. In this case,prelink converts1138

theSHT NOBITS sections intoSHT PROGBITSsections, fills them with zeros and adds the new section after it.1139

This doesn’t increase number ofPT LOADsegments, but unfortunately those added sections are writable. This1140

doesn’t matter much for e.g..gnu.conflict section which is only used before control is transfered to the1141

program, but could matter for.dynstr which is used even duringdlopen .1142

• On IA-32, executables have for historical reasons base address 0x8048000. The reason for this was that when1143

stack was put immediately below executables, stack and the executable could coexist in the same second level1144

page table. Linux puts the stack typically at the end of virtual address space and so keeping this exact base1145

address is not really necessary.Prelink can decrease the base address and thus increase size of read-only1146

PT LOADsegment whileSHT PROGBITSandSHT NOBITS section can stay at their previous addresses. Just their1147

file offsets need to be increased. All these segment header adjustments need to be done in multiplies ofELF1148

page sizes, so even ifprelink chose to do similar things on architectures other than IA-32 which typically1149

start executables on some address which is a power of 2, it would be only reasonable ifELF page size on that1150

architecture (which can be much bigger than page size used by the operating system) is very small.1151

• Last possibility is to create a newPT LOADsegment. 19 Section immediately above program header table1152

(typically .interp) has to be moved somewhere else, but if possible close to the beginning of the executable.1153

The newPT LOADsegment is then added after the lastPT LOADsegment. The segment has to be writable even1154

when all the sections in it are read-only, unless it ends exactly on a page boundary, becausebrk area starts1155

immediately after the end of lastPT LOADsegment and the executable expects it to be writable.1156

So that verification works properly, if there is.gnu.prelink undo section in the executable,prelink first reshuffles1157

the sections and segments for the purpose of finding places for the sections to the original sequence as recorded in the1158

.gnu.prelink undo section. Examples of the above mentioned cases:1159

$ SEDCMD=’s/ˆ.* \.plt.*$/.../;/\[.*\.text/,/\[.*\.got/d’1160

$ SEDCMD2=’/Section to Segment/,$d;/ˆKey to/,/ˆProgram/d;/ˆ[A-Z]/d;/ˆ *$/d’1161

$ cat > test1.c <<EOF1162

int main (void) { return 0; }1163

EOF1164

$ gcc -Wl,--verbose 2>&1 \1165

| sed ’/ˆ===/,/ˆ===/!d;/ˆ===/d;s/\.rel\.dyn/. += 512; &/’ > test1.lds1166

$ gcc -s -O2 -o test1 test1.c -Wl,-T,test1.lds1167

$ readelf -Sl ./test1 | sed -e "$SEDCMD" -e "$SEDCMD2"1168

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1169

[0] NULL 00000000 000000 000000 00 0 0 01170

[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 11171

[2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 41172

[3] .hash HASH 08048148 000148 000024 04 A 4 0 41173

[4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 5 1 41174

[5] .dynstr STRTAB 080481ac 0001ac 000045 00 A 0 0 11175

[6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 21176

[7] .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 5 1 41177

[8] .rel.dyn REL 0804841c 00041c 000008 08 A 4 0 41178

[9] .rel.plt REL 08048424 000424 000008 08 A 4 b 41179

[10] .init PROGBITS 0804842c 00042c 000017 00 AX 0 0 41180

...1181

[22] .bss NOBITS 080496f8 0006f8 000004 00 WA 0 0 41182

18With a notable exception of splitting one section into two covering the same virtual address range.
19Linux kernels before 2.4.10 loaded executables which had middlePT LOADsegment withp memszbigger thanp filesz incorrectly, so

prelink should be only used on systems with 2.4.10 or later kernels.

Jakub Jelı́nek Draft 0.7 25

Dra
ft

[23] .comment PROGBITS 00000000 0006f8 000132 00 0 0 11183

[24] .shstrtab STRTAB 00000000 00082a 0000be 00 0 0 11184

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1185

PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E 0x41186

INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R 0x11187

[Requesting program interpreter: /lib/ld-linux.so.2]1188

LOAD 0x000000 0x08048000 0x08048000 0x005fc 0x005fc R E 0x10001189

LOAD 0x0005fc 0x080495fc 0x080495fc 0x000fc 0x00100 RW 0x10001190

DYNAMIC 0x000608 0x08049608 0x08049608 0x000c8 0x000c8 RW 0x41191

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x41192

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41193

$ prelink -N ./test11194

$ readelf -Sl ./test1 | sed -e "$SEDCMD" -e "$SEDCMD2"1195

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1196

[0] NULL 00000000 000000 000000 00 0 0 01197

[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 11198

[2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 41199

[3] .hash HASH 08048148 000148 000024 04 A 4 0 41200

[4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 8 1 41201

[5] .gnu.liblist GNU_LIBLIST 080481ac 0001ac 000028 14 A 8 0 41202

[6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 21203

[7] .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 8 1 41204

[8] .dynstr STRTAB 0804821c 00021c 000058 00 A 0 0 11205

[9] .gnu.conflict RELA 08048274 000274 0000c0 0c A 4 0 41206

[10] .rel.dyn REL 0804841c 00041c 000008 08 A 4 0 41207

[11] .rel.plt REL 08048424 000424 000008 08 A 4 d 41208

[12] .init PROGBITS 0804842c 00042c 000017 00 AX 0 0 41209

...1210

[24] .bss NOBITS 080496f8 0006f8 000004 00 WA 0 0 41211

[25] .comment PROGBITS 00000000 0006f8 000132 00 0 0 11212

[26] .gnu.prelink_undo PROGBITS 00000000 00082c 0004d4 01 0 0 41213

[27] .shstrtab STRTAB 00000000 000d00 0000eb 00 0 0 11214

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1215

PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E 0x41216

INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R 0x11217

[Requesting program interpreter: /lib/ld-linux.so.2]1218

LOAD 0x000000 0x08048000 0x08048000 0x005fc 0x005fc R E 0x10001219

LOAD 0x0005fc 0x080495fc 0x080495fc 0x000fc 0x00100 RW 0x10001220

DYNAMIC 0x000608 0x08049608 0x08049608 0x000c8 0x000c8 RW 0x41221

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x41222

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41223

Listing 15: Reshuffling of an executable with a gap between sections

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

.interpdynsym .dynstr .gnu.version* .rel.dyneh_frame

.interpdynsym .gnu.liblist .gnu.version* .dynstr .gnu.conflict .rel.dyneh_frame

.datagot

.datagot

.bss

.bss

Figure 4: Reshuffling of an executable with a gap between sections

In the above sample, there was enough space between sections (particularly between the end of the.gnu.version r1224

section and the start of.rel.dyn) that the new sections could be added there.1225

$ SEDCMD=’s/ˆ.* \.plt.*$/.../;/\[.*\.text/,/\[.*\.got/d’1226

26 Draft 0.7 Prelink

Dra
ft

$ SEDCMD2=’/Section to Segment/,$d;/ˆKey to/,/ˆProgram/d;/ˆ[A-Z]/d;/ˆ *$/d’1227

$ cat > test2.c <<EOF1228

int main (void) { return 0; }1229

EOF1230

$ gcc -s -O2 -o test2 test2.c1231

$ readelf -Sl ./test2 | sed -e "$SEDCMD" -e "$SEDCMD2"1232

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1233

[0] NULL 00000000 000000 000000 00 0 0 01234

[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 11235

[2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 41236

[3] .hash HASH 08048148 000148 000024 04 A 4 0 41237

[4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 5 1 41238

[5] .dynstr STRTAB 080481ac 0001ac 000045 00 A 0 0 11239

[6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 21240

[7] .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 5 1 41241

[8] .rel.dyn REL 0804821c 00021c 000008 08 A 4 0 41242

[9] .rel.plt REL 08048224 000224 000008 08 A 4 b 41243

[10] .init PROGBITS 0804822c 00022c 000017 00 AX 0 0 41244

...1245

[22] .bss NOBITS 080494f8 0004f8 000004 00 WA 0 0 41246

[23] .comment PROGBITS 00000000 0004f8 000132 00 0 0 11247

[24] .shstrtab STRTAB 00000000 00062a 0000be 00 0 0 11248

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1249

PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E 0x41250

INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R 0x11251

[Requesting program interpreter: /lib/ld-linux.so.2]1252

LOAD 0x000000 0x08048000 0x08048000 0x003fc 0x003fc R E 0x10001253

LOAD 0x0003fc 0x080493fc 0x080493fc 0x000fc 0x00100 RW 0x10001254

DYNAMIC 0x000408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x41255

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x41256

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41257

$ prelink -N ./test21258

$ readelf -Sl ./test2 | sed -e "$SEDCMD" -e "$SEDCMD2"1259

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1260

[0] NULL 00000000 000000 000000 00 0 0 01261

[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 11262

[2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 41263

[3] .hash HASH 08048148 000148 000024 04 A 4 0 41264

[4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 23 1 41265

[5] .gnu.liblist GNU_LIBLIST 080481ac 0001ac 000028 14 A 23 0 41266

[6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 21267

[7] .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 23 1 41268

[8] .rel.dyn REL 0804821c 00021c 000008 08 A 4 0 41269

[9] .rel.plt REL 08048224 000224 000008 08 A 4 b 41270

[10] .init PROGBITS 0804822c 00022c 000017 00 AX 0 0 41271

...1272

[22] .bss PROGBITS 080494f8 0004f8 000004 00 WA 0 0 41273

[23] .dynstr STRTAB 080494fc 0004fc 000058 00 A 0 0 11274

[24] .gnu.conflict RELA 08049554 000554 0000c0 0c A 4 0 41275

[25] .comment PROGBITS 00000000 000614 000132 00 0 0 11276

[26] .gnu.prelink_undo PROGBITS 00000000 000748 0004d4 01 0 0 41277

[27] .shstrtab STRTAB 00000000 000c1c 0000eb 00 0 0 11278

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1279

PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E 0x41280

INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R 0x11281

[Requesting program interpreter: /lib/ld-linux.so.2]1282

LOAD 0x000000 0x08048000 0x08048000 0x003fc 0x003fc R E 0x10001283

LOAD 0x0003fc 0x080493fc 0x080493fc 0x00218 0x00218 RW 0x10001284

DYNAMIC 0x000408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x41285

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x41286

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41287

Listing 16: Reshuffling of an executable with small.bss

Jakub Jelı́nek Draft 0.7 27

Dra
ft

�����
�����
�����
�����

�����
�����
�����
�����

.interpdynsym .dynstr

.interpdynsym .gnu.liblist .gnu.versioneh_frame

.gnu.versioneh_frame .datagot

.datagot

.bss

.bss .dynstr .gnu.conflict

Figure 5: Reshuffling of an executable with small.bss

In this case.bss section was small enough thatprelink converted it toSHT PROGBITS.1288

$ SEDCMD=’s/ˆ.* \.plt.*$/.../;/\[.*\.text/,/\[.*\.got/d’1289

$ SEDCMD2=’/Section to Segment/,$d;/ˆKey to/,/ˆProgram/d;/ˆ[A-Z]/d;/ˆ *$/d’1290

$ cat > test3.c <<EOF1291

int foo [4096];1292

int main (void) { return 0; }1293

EOF1294

$ gcc -s -O2 -o test3 test3.c1295

$ readelf -Sl ./test3 | sed -e "$SEDCMD" -e "$SEDCMD2"1296

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1297

[0] NULL 00000000 000000 000000 00 0 0 01298

[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 11299

[2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 41300

[3] .hash HASH 08048148 000148 000024 04 A 4 0 41301

[4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 5 1 41302

[5] .dynstr STRTAB 080481ac 0001ac 000045 00 A 0 0 11303

[6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 21304

[7] .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 5 1 41305

[8] .rel.dyn REL 0804821c 00021c 000008 08 A 4 0 41306

[9] .rel.plt REL 08048224 000224 000008 08 A 4 b 41307

[10] .init PROGBITS 0804822c 00022c 000017 00 AX 0 0 41308

...1309

[22] .bss NOBITS 08049500 000500 004020 00 WA 0 0 321310

[23] .comment PROGBITS 00000000 000500 000132 00 0 0 11311

[24] .shstrtab STRTAB 00000000 000632 0000be 00 0 0 11312

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1313

PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E 0x41314

INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R 0x11315

[Requesting program interpreter: /lib/ld-linux.so.2]1316

LOAD 0x000000 0x08048000 0x08048000 0x003fc 0x003fc R E 0x10001317

LOAD 0x0003fc 0x080493fc 0x080493fc 0x000fc 0x04124 RW 0x10001318

DYNAMIC 0x000408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x41319

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x41320

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41321

$ prelink -N ./test31322

$ readelf -Sl ./test3 | sed -e "$SEDCMD" -e "$SEDCMD2"1323

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1324

[0] NULL 00000000 000000 000000 00 0 0 01325

[1] .interp PROGBITS 08047114 000114 000013 00 A 0 0 11326

[2] .note.ABI-tag NOTE 08047128 000128 000020 00 A 0 0 41327

[3] .dynstr STRTAB 08047148 000148 000058 00 A 0 0 11328

[4] .gnu.liblist GNU_LIBLIST 080471a0 0001a0 000028 14 A 3 0 41329

[5] .gnu.conflict RELA 080471c8 0001c8 0000c0 0c A 7 0 41330

[6] .hash HASH 08048148 001148 000024 04 A 7 0 41331

[7] .dynsym DYNSYM 0804816c 00116c 000040 10 A 3 1 41332

[8] .gnu.version VERSYM 080481f2 0011f2 000008 02 A 7 0 21333

28 Draft 0.7 Prelink

Dra
ft

[9] .gnu.version_r VERNEED 080481fc 0011fc 000020 00 A 3 1 41334

[10] .rel.dyn REL 0804821c 00121c 000008 08 A 7 0 41335

[11] .rel.plt REL 08048224 001224 000008 08 A 7 d 41336

[12] .init PROGBITS 0804822c 00122c 000017 00 AX 0 0 41337

...1338

[24] .bss NOBITS 08049500 0014f8 004020 00 WA 0 0 321339

[25] .comment PROGBITS 00000000 0014f8 000132 00 0 0 11340

[26] .gnu.prelink_undo PROGBITS 00000000 00162c 0004d4 01 0 0 41341

[27] .shstrtab STRTAB 00000000 001b00 0000eb 00 0 0 11342

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1343

PHDR 0x000034 0x08047034 0x08047034 0x000e0 0x000e0 R E 0x41344

INTERP 0x000114 0x08047114 0x08047114 0x00013 0x00013 R 0x11345

[Requesting program interpreter: /lib/ld-linux.so.2]1346

LOAD 0x000000 0x08047000 0x08047000 0x013fc 0x013fc R E 0x10001347

LOAD 0x0013fc 0x080493fc 0x080493fc 0x000fc 0x04124 RW 0x10001348

DYNAMIC 0x001408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x41349

NOTE 0x000128 0x08047128 0x08047128 0x00020 0x00020 R 0x41350

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41351

Listing 17: Reshuffling of an executable with decreasing of base address

.hash, .dynsym .gnu.versioneh_frame

.hash, .dynsym .gnu.versioneh_frame

.interp, .note.ABI−tag

.interp, .note.ABI−tag

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

.gnu.liblist .gnu.conflict .datagot .bss

.datagot .bss.dynstr

.dynstr

Figure 6: Reshuffling of an executable with decreasing of the base address

In test3 the base address of the executable was decreased by one page and the new sections added there.1352

$ SEDCMD=’s/ˆ.* \.plt.*$/.../;/\[.*\.text/,/\[.*\.got/d’1353

$ SEDCMD2=’/Section to Segment/,$d;/ˆKey to/,/ˆProgram/d;/ˆ[A-Z]/d;/ˆ *$/d’1354

$ cat > test4.c <<EOF1355

int foo [4096];1356

int main (void) { return 0; }1357

EOF1358

$ gcc -Wl,--verbose 2>&1 \1359

| sed ’/ˆ===/,/ˆ===/!d;/ˆ===/d;s/0x08048000/0x08000000/’ > test4.lds1360

$ gcc -s -O2 -o test4 test4.c -Wl,-T,test4.lds1361

$ readelf -Sl ./test4 | sed -e "$SEDCMD" -e "$SEDCMD2"1362

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1363

[0] NULL 00000000 000000 000000 00 0 0 01364

[1] .interp PROGBITS 08000114 000114 000013 00 A 0 0 11365

[2] .note.ABI-tag NOTE 08000128 000128 000020 00 A 0 0 41366

[3] .hash HASH 08000148 000148 000024 04 A 4 0 41367

[4] .dynsym DYNSYM 0800016c 00016c 000040 10 A 5 1 41368

[5] .dynstr STRTAB 080001ac 0001ac 000045 00 A 0 0 11369

[6] .gnu.version VERSYM 080001f2 0001f2 000008 02 A 4 0 21370

[7] .gnu.version_r VERNEED 080001fc 0001fc 000020 00 A 5 1 41371

[8] .rel.dyn REL 0800021c 00021c 000008 08 A 4 0 41372

[9] .rel.plt REL 08000224 000224 000008 08 A 4 b 41373

[10] .init PROGBITS 0800022c 00022c 000017 00 AX 0 0 41374

...1375

[22] .bss NOBITS 08001500 000500 004020 00 WA 0 0 321376

[23] .comment PROGBITS 00000000 000500 000132 00 0 0 11377

Jakub Jelı́nek Draft 0.7 29

Dra
ft

[24] .shstrtab STRTAB 00000000 000632 0000be 00 0 0 11378

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1379

PHDR 0x000034 0x08000034 0x08000034 0x000e0 0x000e0 R E 0x41380

INTERP 0x000114 0x08000114 0x08000114 0x00013 0x00013 R 0x11381

[Requesting program interpreter: /lib/ld-linux.so.2]1382

LOAD 0x000000 0x08000000 0x08000000 0x003fc 0x003fc R E 0x10001383

LOAD 0x0003fc 0x080013fc 0x080013fc 0x000fc 0x04124 RW 0x10001384

DYNAMIC 0x000408 0x08001408 0x08001408 0x000c8 0x000c8 RW 0x41385

NOTE 0x000128 0x08000128 0x08000128 0x00020 0x00020 R 0x41386

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41387

$ prelink -N ./test41388

$ readelf -Sl ./test4 | sed -e "$SEDCMD" -e "$SEDCMD2"1389

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al1390

[0] NULL 00000000 000000 000000 00 0 0 01391

[1] .interp PROGBITS 08000134 000134 000013 00 A 0 0 11392

[2] .note.ABI-tag NOTE 08000148 000148 000020 00 A 0 0 41393

[3] .hash HASH 08000168 000168 000024 04 A 4 0 41394

[4] .dynsym DYNSYM 0800018c 00018c 000040 10 A 22 1 41395

[5] .gnu.version VERSYM 080001f2 0001f2 000008 02 A 4 0 21396

[6] .gnu.version_r VERNEED 080001fc 0001fc 000020 00 A 22 1 41397

[7] .rel.dyn REL 0800021c 00021c 000008 08 A 4 0 41398

[8] .rel.plt REL 08000224 000224 000008 08 A 4 a 41399

[9] .init PROGBITS 0800022c 00022c 000017 00 AX 0 0 41400

...1401

[21] .bss NOBITS 08001500 0004f8 004020 00 WA 0 0 321402

[22] .dynstr STRTAB 080064f8 0004f8 000058 00 A 0 0 11403

[23] .gnu.liblist GNU_LIBLIST 08006550 000550 000028 14 A 22 0 41404

[24] .gnu.conflict RELA 08006578 000578 0000c0 0c A 4 0 41405

[25] .comment PROGBITS 00000000 000638 000132 00 0 0 11406

[26] .gnu.prelink_undo PROGBITS 00000000 00076c 0004d4 01 0 0 41407

[27] .shstrtab STRTAB 00000000 000c40 0000eb 00 0 0 11408

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align1409

PHDR 0x000034 0x08000034 0x08000034 0x000e0 0x000e0 R E 0x41410

INTERP 0x000134 0x08000134 0x08000134 0x00013 0x00013 R 0x11411

[Requesting program interpreter: /lib/ld-linux.so.2]1412

LOAD 0x000000 0x08000000 0x08000000 0x003fc 0x003fc R E 0x10001413

LOAD 0x0003fc 0x080013fc 0x080013fc 0x000fc 0x04124 RW 0x10001414

LOAD 0x0004f8 0x080064f8 0x080064f8 0x00140 0x00140 RW 0x10001415

DYNAMIC 0x000408 0x08001408 0x08001408 0x000c8 0x000c8 RW 0x41416

NOTE 0x000148 0x08000148 0x08000148 0x00020 0x00020 R 0x41417

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x41418

Listing 18: Reshuffling of an executable with addition of a new segment

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

.datagot .bss

.datagot .bss

.gnu.liblist .gnu.conflict.dynstr

.interpdynsym .dynstr .gnu.versioneh_frame

.interpdynsym .gnu.versioneh_frame

Figure 7: Reshuffling of an executable with addition of a new segment

In the last example, base address was not decreased but instead a newPT LOADsegment has been added.1419

R <arch> COPYrelocations are typically against first part of theSHT NOBITS .bss section. So thatprelink can1420

apply them, it needs to first change their section toSHT PROGBITS, but as.bss section typically occupies much larger1421

30 Draft 0.7 Prelink

Dra
ft

part of memory, it is not desirable to convert.bss section intoSHT PROGBITSas whole. A section cannot be partly1422

SHT PROGBITSand partlySHT NOBITS, soprelink first splits the section into two parts, first.dynbss which covers1423

area from the start of.bss section up to highest byte to which some COPY relocation is applied and then the old.bss .1424

The first is converted toSHT PROGBITSand its size is decreased, the latter staysSHT NOBITS and its start address and1425

file offset are adjusted as well as its size decreased. The dynamic linker handles relocations in the executable last, so1426

prelink cannot just copy memory from the shared library where the symbol of the COPY relocation has been looked1427

up in. There might be relocations applied by the dynamic linker in normal relocation processing to the objects, so1428

prelink has to first process the relocations against that memory area. Relocations which don’t need conflict fixups1429

are already applied, soprelink just needs to apply conflict fixups against the memory area, then copy it to the newly1430

created.dynbss section.1431

Here is an example which shows various things which COPY relocation handling inprelink needs to deal with:1432

$ cat > test1.c <<EOF1433

struct A { char a; struct A *b; int *c; int *d; };1434

int bar, baz;1435

struct A foo = { 1, &foo, &bar, &baz };1436

int *addr (void) { return &baz; }1437

EOF1438

$ cat > test.c <<EOF1439

#include <stdio.h>1440

struct A { char a; struct A *b; int *c; int *d; };1441

int bar, *addr (void), big[8192];1442

extern struct A foo;1443

int main (void)1444

{1445

printf ("%p: %d %p %p %p %p %p\n", &foo, foo.a, foo.b, foo.c, foo.d,1446

&bar, addr ());1447

}1448

EOF1449

$ gcc -nostdlib -shared -fpic -s -o test1.so test1.c1450

$ gcc -s -o test test.c ./test1.so1451

$./test1452

0x80496c0: 1 0x80496c0 0x80516e0 0x4833a4 0x80516e0 0x4833a41453

$ readelf -r test | sed ’/\.rel\.dyn/,/\.rel\.plt/!d;/ˆ0/!d’1454

080496ac 00000c06 R_386_GLOB_DAT 00000000 __gmon_start__1455

080496c0 00000605 R_386_COPY 080496c0 foo1456

$ readelf -S test | grep bss1457

[22] .bss NOBITS 080496c0 0006c0 008024 00 WA 0 0 321458

$ prelink -N ./test ./test1.so1459

$ readelf -s test | grep foo1460

6: 080496c0 16 OBJECT GLOBAL DEFAULT 25 foo1461

$ readelf -s test1.so | grep foo1462

15: 004a9314 16 OBJECT GLOBAL DEFAULT 6 foo1463

$ readelf -r test | sed ’/.gnu.conflict/,/\.rel\.dyn/!d;/ˆ0/!d’1464

004a9318 00000001 R_386_32 080496c01465

004a931c 00000001 R_386_32 080516e01466

005f9874 00000001 R_386_32 fffffff01467

005f9878 00000001 R_386_32 000000011468

005f98bc 00000001 R_386_32 fffffff41469

005f9900 00000001 R_386_32 ffffffec1470

005f9948 00000001 R_386_32 ffffffdc1471

005f995c 00000001 R_386_32 ffffffe01472

005f9980 00000001 R_386_32 fffffff81473

005f9988 00000001 R_386_32 ffffffe41474

005f99a4 00000001 R_386_32 ffffffd81475

005f99c4 00000001 R_386_32 ffffffe81476

005f99d8 00000001 R_386_32 080485841477

004c2510 00000007 R_386_JUMP_SLOT 005344601478

004c2514 00000007 R_386_JUMP_SLOT 005340801479

004c2518 00000007 R_386_JUMP_SLOT 005347501480

004c251c 00000007 R_386_JUMP_SLOT 005342c01481

Jakub Jelı́nek Draft 0.7 31

Dra
ft

004c2520 00000007 R_386_JUMP_SLOT 005342001482

$ objdump -s -j .dynbss test1483

1484

test: file format elf32-i3861485

1486

Contents of section .dynbss:1487

80496c0 01000000 c0960408 e0160508 a4934a00J.1488

$ objdump -s -j .data test1.so1489

1490

test1.so: file format elf32-i3861491

1492

Contents of section .data:1493

4a9314 01000000 14934a00 a8934a00 a4934a00J...J...J.1494

$ readelf -S test | grep bss1495

[24] .dynbss PROGBITS 080496c0 0016c0 000010 00 WA 0 0 321496

[25] .bss NOBITS 080496d0 0016d0 008014 00 WA 0 0 321497

$ sed ’s/8192/1/’ test.c > test2.c1498

$ gcc -s -o test2 test2.c ./test1.so1499

$ readelf -S test2 | grep bss1500

[22] .bss NOBITS 080496b0 0006b0 00001c 00 WA 0 0 81501

$ prelink -N ./test2 ./test1.so1502

$ readelf -S test2 | grep bss1503

[22] .dynbss PROGBITS 080496b0 0006b0 000010 00 WA 0 0 81504

[23] .bss PROGBITS 080496c0 0006c0 00000c 00 WA 0 0 81505

Listing 19: Relocation handling of.dynbss objects

Becausetest.c executable is not compiled as position independent code and takes address offoo variable, a COPY1506

relocation is needed to avoid dynamic relocation against executable’s read-onlyPT LOADsegment. Thefoo object1507

in test1.so has one field with no relocations applied at all, one relocation against the variable itself, one relocation1508

which needs a conflict fixup (as it is overridden by the variable in the executable) and one with relocation which doesn’t1509

need any fixups. The first and last field contain already the right values in prelinkedtest1.so , while second and third1510

one need to be changed for symbol addresses in the executable (as shown in theobjdump output). The conflict fixups1511

againstfoo in test1.so need to stay (unless it is a C++ virtual table orRTTI data, i.e. not in this testcase). In1512

test , prelink changed.dynbss to SHT PROGBITSand keptSHT NOBITS .bss , while in slightly modified testcase1513

(test2) the size of.bss was small enough thatprelink chose to make itSHT PROGBITStoo and grow the read-write1514

PT LOADsegment and put.dynstr and.gnu.conflict sections after it.1515

12 Prelink undo operation

Prelinking of shared libraries and executables is designed to be reversible, so that prelink operation followed by undo1516

operation generates bitwise identical file to the original before prelinking. For this operationprelink stores the orig-1517

inal ELF header, all the program and all section headers into a.gnu.prelink undo section before it starts prelinking1518

an unprelinked executable or shared library. When undoing the modifications,prelink has to convertRELA back1519

to REL first if REL to RELAconversion was done during prelinking and all allocated sections above it relocated down1520

to adjust for the section shrink. Relocation types which were changed when trying to avoidREL to RELAconversion1521

need to be changed back (e.g. on IA-32, it is assumedR 386 GLOBDATrelocations should be only those against.got1522

section andR 386 32 relocations in the remaining places). OnRELAarchitectures, the memory pointed byr offset1523

field of the relocations needs to be reinitialized to the values stored there by the linker originally. Forprelink it1524

doesn’t matter much what this value is (e.g. always 0, copy ofr addend , etc.), as long as it is computable from the1525

informationprelink has during undo operation20. The GNU linker had to be changed on several architectures, so1526

that it stores there such a value, as in several places the value e.g. depended on original addend before final link (which1527

is not available anywhere after final link time, sincer addend field could be adjusted during the final link). If second1528

word of .got section has been modified, it needs to be reverted back to the original value (on most architectures zero).1529

In executables, sections which were moved during prelinking need to be put back and segments added while prelinking1530

must be removed.1531

20Such as relocation type,r addend value, type, binding, flags or other attributes of relocation’s symbol, what section the relocation points
into or the offset within section it points to.

32 Draft 0.7 Prelink

Dra
ft

There are 3 different ways how an undo operation can be performed:1532

• Undoing individual executables or shared libraries specified on the command line in place (i.e. when the undo1533

operation is successful, the prelinked executable or library is atomically replaced with the undone object).1534

• With -o option, only a single executable or shared library given on the command line is undone and stored to the1535

file specified as-o option’s argument.1536

• With -ua options,prelink builds a list of executables in paths written in its config file (plus directories and1537

executables or libraries from command line) and all shared libraries these executables depend on. All executables1538

and libraries in the list are then unprelinked. This option is used to unprelink the whole system. It is not perfect1539

and needs to be worked on, since e.g. if some executable uses some shared library which no other executable1540

links against, this executable (and shared library) is prelinked, then the executable is removed (e.g. uninstalled)1541

but the shared library is kept, then the shared library is not unprelinked unless specifically mentioned on the1542

command line.1543

13 Verification of prelinked files

As prelink needs to modify executables and shared libraries installed on a system, it complicates system integrity1544

verification (e.g.rpm -V , TripWire). These systems store checksums of installed files into some database and during1545

verification compute them again and compare to the values stored in the database. On a prelinked system most of the1546

executables and shared libraries would be reported as modified.Prelink offers a special mode for these systems, in1547

which it verifies that unprelinking the executable or shared library followed by immediate prelinking (with the same1548

base address) creates bitwise identical output with the executable or shared library that’s being verified. Furthermore,1549

depending on otherprelink options, it either writes the unprelinked image to its standard output or computes MD51550

or SHA1 digest from this unprelinked image. Mere undo operation to a file and checksumming it is not good enough,1551

since an intruder could have modified e.g. conflict fixups or memory which relocations point at, changing a behavior1552

of the program while file after unprelinking would be unmodified.1553

During verification, bothprelink executable and the dynamic linker are used, so a proper system integrity verifica-1554

tion first checks whetherprelink executable (which is statically linked for this reason) hasn’t been modified, then1555

usesprelink --verify to verify the dynamic linker (when verificatingld.so the dynamic linker is not executed)1556

followed by verification of other executables and libraries.1557

Verification requires all dependencies of checked object to be unmodified since last prelinking. If some dependency1558

has been changed or is missing,prelink will report it and return with non-zero exit status. This is because prelinking1559

depends on their content and so if they are modified, the executable or shared library might be different to one after1560

unprelinking followed by prelinking again. In the future, perhaps it would be possible to even verify executables or1561

shared libraries without unmodified dependencies, under the assumption that in such case the prelink information will1562

not be used. It would just need to verify that nothing else but the information only used when dependencies are up to1563

date has changed between the executable or library on the filesystem and file after unprelink followed by prelink cycle.1564

The prelink operation would need to be modified in this case, so that no information is collected from the dynamic1565

linker, the list of dependencies is assumed to be the one stored in the executable and expect it to have identical number1566

of conflict fixups.1567

14 Measurements

There are two areas whereprelink can speed things up noticeably. The primary is certainly startup time of big GUI1568

applications where the dynamic linker spends from 100ms up to a few seconds before giving control to the application.1569

Another area is when lots of small programs are started up, but their execution time is rather short, so the startup time1570

which prelink optimizes is a noticeable fraction of the total time. This is typical for shell scripting.1571

First numbers are fromlmbench benchmark, version 3.0-a3. Most of the benchmarks inlmbench suite measure kernel1572

speed, so it doesn’t matter much whetherprelink is used or not. Only inlat proc benchmarkprelink shows up1573

visibly. This benchmark measures 3 different things:1574

• fork proc, which isfork() followed by immediateexit(1) in the child andwait(0) in the parent. The results1575

are (as expected) about the same between unprelinked and prelinked systems.1576

Jakub Jelı́nek Draft 0.7 33

Dra
ft

• exec proc, i.e. fork() followed by immediateclose(1) and execve() of a simple hello world program1577

(this program is compiled and linked during the benchmark into a temporary directory and is never prelinked).1578

The numbers are 160µs to 200µs better on prelinked systems, because there is no relocation processing needed1579

initially in the dynamic linker and because all relative relocations inlibc.so.6 can be skipped.1580

• sh proc, i.e. fork() followed by immediateclose(1) andexeclp("/bin/sh", "sh", "-c", "/tmp/hello",1581

0) . Although the hello world program is not prelinked in this case either, the shell is, so out of the 900µs to1582

1000µs speedup less than 200µs can be accounted on the speed up of the hello world program as inexec proc1583

benchmark and the rest to the speedup of shell startup.1584

First 4 rows are from running the benchmark on a fully unprelinked system, the last 4 rows on the same system, but1585

fully prelinked.1586

L M B E N C H 3 . 0 S U M M A R Y1587

------------------------------------1588

(Alpha software, do not distribute)1589

1590

Processor, Processes - times in microseconds - smaller is better1591

---1592

Host OS Mhz null null open slct sig sig fork exec sh1593

call I/O stat clos TCP inst hndl proc proc proc1594

---- ------------ ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----1595

pork Linux 2.4.22 651 0.53 0.97 6.20 8.10 41.2 1.44 4.30 276. 1497 54031596

pork Linux 2.4.22 651 0.53 0.95 6.14 7.91 37.8 1.43 4.34 274. 1486 53911597

pork Linux 2.4.22 651 0.56 0.94 6.18 8.09 43.4 1.41 4.30 251. 1507 54231598

pork Linux 2.4.22 651 0.53 0.94 6.12 8.09 41.0 1.43 4.40 256. 1497 53851599

pork Linux 2.4.22 651 0.56 0.94 5.79 7.58 39.1 1.41 4.30 271. 1319 44601600

pork Linux 2.4.22 651 0.56 0.92 5.76 7.40 38.9 1.41 4.30 253. 1304 44171601

pork Linux 2.4.22 651 0.56 0.95 6.20 7.83 37.7 1.41 4.37 248. 1323 44811602

pork Linux 2.4.22 651 0.56 1.01 6.04 7.77 37.9 1.43 4.32 256. 1324 44571603

Listing 20: lmbench results without and with prelinking

Below is a sample timing of a 239K long configure shell script from GCC on both unprelinked and prelinked system.1604

Preparation step was following:1605

cd; cvs -d :pserver:anoncvs@subversions.gnu.org:/cvsroot/gcc login1606

Empty password1607

cvs -d :pserver:anoncvs@subversions.gnu.org:/cvsroot/gcc -z3 co -D20031103 gcc1608

mkdir ˜/gcc/obj1609

cd ˜/gcc/obj; ../configure i386-redhat-linux; make configure-gcc1610

Listing 21: Preparation script for shell script tests

On an unprelinked system, the results were:1611

cd ˜/gcc/obj/gcc1612

for i in 1 2; do ./config.status --recheck > /dev/null 2>&1; done1613

for i in 1 2 3 4; do time ./config.status --recheck > /dev/null 2>&1; done1614

1615

real 0m4.436s1616

user 0m1.730s1617

sys 0m1.260s1618

1619

34 Draft 0.7 Prelink

Dra
ft

real 0m4.409s1620

user 0m1.660s1621

sys 0m1.340s1622

1623

real 0m4.431s1624

user 0m1.810s1625

sys 0m1.300s1626

1627

real 0m4.432s1628

user 0m1.670s1629

sys 0m1.210s1630

Listing 22: Shell script test results on unprelinked system

and on a fully prelinked system:1631

cd ˜/gcc/obj/gcc1632

for i in 1 2; do ./config.status --recheck > /dev/null 2>&1; done1633

for i in 1 2 3 4; do time ./config.status --recheck > /dev/null 2>&1; done1634

1635

real 0m4.126s1636

user 0m1.590s1637

sys 0m1.240s1638

1639

real 0m4.151s1640

user 0m1.620s1641

sys 0m1.230s1642

1643

real 0m4.161s1644

user 0m1.600s1645

sys 0m1.190s1646

1647

real 0m4.122s1648

user 0m1.570s1649

sys 0m1.230s1650

Listing 23: Shell script test results on prelinked system

Now timing of a few big GUI programs. All timings were done without X server running and withDISPLAY environ-1651

ment variable not set (so that when control is transfered to the application, it very soon finds out there is no X server1652

it can talk to and bail out). The measurements are done by the dynamic linker in ticks on a 651MHz dual Pentium III1653

machine, i.e. ticks have to be divided by 651000000 to get times in seconds. Each application has been run 4 times and1654

the results with smallest total time spent in the dynamic linker was chosen. Epiphany WWW browser and Evolution1655

mail client were chosen as examples ofGtk+ applications (typically they use really many shared libraries, but many1656

of them are quite small, there aren’t really many relocations nor conflict fixups and most of the libraries are written1657

in C) and Konqueror WWW browser and KWord word processor were chosen as examples ofKDEapplications (typ-1658

ically they use slightly fewer shared libraries, though still a lot, most of the shared libraries are written in C++, have1659

many relocations and cause many conflict fixups, especially without C++ conflict fixup optimizations inprelink).1660

On non-prelinked system, the timings are done with lazy binding, i.e. withoutLD BIND NOW=1set in the environment.1661

This is because that’s how people generally run programs, on the other side it is not exact apples to apples comparison,1662

since on prelinked system there is no lazy binding with the exception of shared libraries loaded throughdlopen . So1663

when control is passed to the application, prelinked programs should be slightly faster for a while since non-prelinked1664

programs will have to do symbol lookups and processing relocations (and on various architectures flushing instruction1665

caches) whenever they call some function they haven’t called before in particular shared library or in the executable.1666

$ ldd ‘which epiphany-bin‘ | wc -l1667

Jakub Jelı́nek Draft 0.7 35

Dra
ft

641668

$ # Unprelinked system1669

$ LD_DEBUG=statistics epiphany-bin 2>&1 | sed ’s/ˆ *//’1670

18960:1671

18960: runtime linker statistics:1672

18960: total startup time in dynamic loader: 67336593 clock cycles1673

18960: time needed for relocation: 58119983 clock cycles (86.3%)1674

18960: number of relocations: 69991675

18960: number of relocations from cache: 47701676

18960: number of relative relocations: 314941677

18960: time needed to load objects: 8696104 clock cycles (12.9%)1678

1679

(epiphany-bin:18960): Gtk-WARNING **: cannot open display:1680

18960:1681

18960: runtime linker statistics:1682

18960: final number of relocations: 76921683

18960: final number of relocations from cache: 47701684

$ # Prelinked system1685

$ LD_DEBUG=statistics epiphany-bin 2>&1 | sed ’s/ˆ *//’1686

25697:1687

25697: runtime linker statistics:1688

25697: total startup time in dynamic loader: 7313721 clock cycles1689

25697: time needed for relocation: 565680 clock cycles (7.7%)1690

25697: number of relocations: 01691

25697: number of relocations from cache: 12051692

25697: number of relative relocations: 01693

25697: time needed to load objects: 6179467 clock cycles (84.4%)1694

1695

(epiphany-bin:25697): Gtk-WARNING **: cannot open display:1696

25697:1697

25697: runtime linker statistics:1698

25697: final number of relocations: 311699

25697: final number of relocations from cache: 12051700

1701

$ ldd ‘which evolution‘ | wc -l1702

681703

$ # Unprelinked system1704

$ LD_DEBUG=statistics evolution 2>&1 | sed ’s/ˆ *//’1705

19042:1706

19042: runtime linker statistics:1707

19042: total startup time in dynamic loader: 54382122 clock cycles1708

19042: time needed for relocation: 43403190 clock cycles (79.8%)1709

19042: number of relocations: 34521710

19042: number of relocations from cache: 28851711

19042: number of relative relocations: 349571712

19042: time needed to load objects: 10450142 clock cycles (19.2%)1713

1714

(evolution:19042): Gtk-WARNING **: cannot open display:1715

19042:1716

19042: runtime linker statistics:1717

19042: final number of relocations: 40751718

19042: final number of relocations from cache: 28851719

$ # Prelinked system1720

$ LD_DEBUG=statistics evolution 2>&1 | sed ’s/ˆ *//’1721

25723:1722

25723: runtime linker statistics:1723

25723: total startup time in dynamic loader: 9176140 clock cycles1724

25723: time needed for relocation: 203783 clock cycles (2.2%)1725

25723: number of relocations: 01726

25723: number of relocations from cache: 5251727

25723: number of relative relocations: 01728

25723: time needed to load objects: 8405157 clock cycles (91.5%)1729

1730

(evolution:25723): Gtk-WARNING **: cannot open display:1731

25723:1732

36 Draft 0.7 Prelink

Dra
ft

25723: runtime linker statistics:1733

25723: final number of relocations: 311734

25723: final number of relocations from cache: 5251735

1736

$ ldd ‘which konqueror‘ | wc -l1737

371738

$ # Unprelinked system1739

$ LD_DEBUG=statistics konqueror 2>&1 | sed ’s/ˆ *//’1740

18979:1741

18979: runtime linker statistics:1742

18979: total startup time in dynamic loader: 131985703 clock cycles1743

18979: time needed for relocation: 127341077 clock cycles (96.4%)1744

18979: number of relocations: 254731745

18979: number of relocations from cache: 535941746

18979: number of relative relocations: 311711747

18979: time needed to load objects: 4318803 clock cycles (3.2%)1748

konqueror: cannot connect to X server1749

18979:1750

18979: runtime linker statistics:1751

18979: final number of relocations: 257591752

18979: final number of relocations from cache: 535941753

$ # Prelinked system1754

$ LD_DEBUG=statistics konqueror 2>&1 | sed ’s/ˆ *//’1755

25733:1756

25733: runtime linker statistics:1757

25733: total startup time in dynamic loader: 5533696 clock cycles1758

25733: time needed for relocation: 1941489 clock cycles (35.0%)1759

25733: number of relocations: 01760

25733: number of relocations from cache: 20661761

25733: number of relative relocations: 01762

25733: time needed to load objects: 3217736 clock cycles (58.1%)1763

konqueror: cannot connect to X server1764

25733:1765

25733: runtime linker statistics:1766

25733: final number of relocations: 01767

25733: final number of relocations from cache: 20661768

1769

$ ldd ‘which kword‘ | wc -l1770

401771

$ # Unprelinked system1772

$ LD_DEBUG=statistics kword 2>&1 | sed ’s/ˆ *//’1773

19065:1774

19065: runtime linker statistics:1775

19065: total startup time in dynamic loader: 153684591 clock cycles1776

19065: time needed for relocation: 148255294 clock cycles (96.4%)1777

19065: number of relocations: 262311778

19065: number of relocations from cache: 558331779

19065: number of relative relocations: 306601780

19065: time needed to load objects: 5068746 clock cycles (3.2%)1781

kword: cannot connect to X server1782

19065:1783

19065: runtime linker statistics:1784

19065: final number of relocations: 265281785

19065: final number of relocations from cache: 558331786

$ # Prelinked system1787

$ LD_DEBUG=statistics kword 2>&1 | sed ’s/ˆ *//’1788

25749:1789

25749: runtime linker statistics:1790

25749: total startup time in dynamic loader: 6516635 clock cycles1791

25749: time needed for relocation: 2106856 clock cycles (32.3%)1792

25749: number of relocations: 01793

25749: number of relocations from cache: 21301794

25749: number of relative relocations: 01795

25749: time needed to load objects: 4008585 clock cycles (61.5%)1796

kword: cannot connect to X server1797

Jakub Jelı́nek Draft 0.7 37

Dra
ft

25749:1798

25749: runtime linker statistics:1799

25749: final number of relocations: 01800

25749: final number of relocations from cache: 21301801

Listing 24: Dynamic linker statistics for unprelinked and prelinked GUI programs

In the case of above mentionedGtk+ applications, the original startup time spent in the dynamic linker decreased into1802

11% to 17% of the original times, withKDEapplications it decreased even into around 4.2% of original times.1803

The startup time reported by the dynamic linker is only part of the total startup time of a GUI program. Unfortunately it1804

cannot be measured very accurately without patching each application separately, so that it would print current process1805

CPU time at the point when all windows are painted and the process starts waiting for user input. The following table1806

contains values reported bytime(1) command on each of the 4 GUI programs running under X, both on unprelinked1807

and fully prelinked system. As soon as each program painted its windows, it was killed by application’s quit hot key1808

21. Especially thereal time values depend also on the speed of human reactions, so each measurement was repeated1809

10 times. All timings were done with hot caches, after running the applications two times before measurement.1810

Type Values (in seconds) Average Std.Dev.
unprelinked epiphany

real 3.053 2.84 2.996 2.901 3.019 2.929 2.883 2.975 2.922 3.0262.954 0.0698
user 2.33 2.31 2.28 2.32 2.44 2.37 2.29 2.35 2.34 2.412.344 0.0508
sys 0.2 0.23 0.23 0.19 0.19 0.12 0.25 0.16 0.14 0.140.185 0.0440

prelinked epiphany
real 2.773 2.743 2.833 2.753 2.753 2.644 2.717 2.897 2.68 2.7612.755 0.0716
user 2.18 2.17 2.17 2.12 2.23 2.26 2.13 2.17 2.15 2.152.173 0.0430
sys 0.13 0.15 0.18 0.15 0.11 0.04 0.18 0.14 0.1 0.150.133 0.0416

unprelinked evolution
real 2.106 1.886 1.828 2.12 1.867 1.871 2.242 1.871 1.862 2.2411.989 0.1679
user 1.12 1.09 1.15 1.19 1.17 1.23 1.15 1.11 1.17 1.141.152 0.0408
sys 0.1 0.11 0.13 0.07 0.1 0.05 0.11 0.11 0.09 0.080.095 0.0232

prelinked evolution
real 1.684 1.621 1.686 1.72 1.694 1.691 1.631 1.697 1.668 1.5351.663 0.0541
user 0.92 0.87 0.92 0.95 0.79 0.86 0.94 0.87 0.89 0.860.887 0.0476
sys 0.06 0.1 0.06 0.05 0.11 0.08 0.07 0.1 0.12 0.070.082 0.0239

unprelinked kword
real 2.111 1.414 1.36 1.356 1.259 1.383 1.28 1.321 1.252 1.4071.414 0.2517
user 1.04 0.9 0.93 0.88 0.89 0.89 0.87 0.89 0.9 0.8 0.899 0.0597
sys 0.07 0.04 0.06 0.05 0.06 0.1 0.09 0.08 0.08 0.120.075 0.0242

prelinked kword
real 1.59 1.052 0.972 1.064 1.106 1.087 1.066 1.087 1.065 1.0051.109 0.1735
user 0.61 0.53 0.58 0.6 0.6 0.58 0.59 0.61 0.57 0.6 0.587 0.0241
sys 0.08 0.08 0.06 0.06 0.03 0.07 0.06 0.03 0.06 0.040.057 0.0183

unprelinked konqueror
real 1.306 1.386 1.27 1.243 1.227 1.286 1.262 1.322 1.345 1.3321.298 0.0495
user 0.88 0.86 0.88 0.9 0.87 0.83 0.83 0.86 0.86 0.890.866 0.0232
sys 0.07 0.11 0.12 0.1 0.12 0.08 0.13 0.12 0.09 0.080.102 0.0210

prelinked konqueror
real 1.056 0.962 0.961 0.906 0.927 0.923 0.933 0.958 0.955 1.1420.972 0.0722
user 0.56 0.6 0.56 0.52 0.57 0.58 0.5 0.57 0.61 0.550.562 0.0334
sys 0.1 0.13 0.08 0.15 0.07 0.09 0.09 0.09 0.1 0.080.098 0.0244

Table 1: GUI program start up times without and with prelinking

1811

21Ctrl+W for Epiphany,Ctrl+Q for Evolution and Konqueror andEnter in Kword’s document type choice dialog.

38 Draft 0.7 Prelink

Dra
ft

OpenOffice.org is probably the largest program these days in Linux, mostly written in C++. InOpenOffice.org1812

1.1, the main executable,soffice.bin , links directly against 34 shared libraries, but typically during startup it loads1813

usingdlopen many others. As has been mentioned earlier,prelink cannot speed up loading shared libraries using1814

dlopen , since it cannot predict in which order and what shared libraries will be loaded (and thus cannot compute1815

conflict fixups). Thesoffice.bin is typically started through a wrapper script and depending on what arguments1816

are passed to it, differentOpenOffice.org application is started. With no options, it starts just empty window with1817

menu from which the applications can be started, with sayprivate:factory/swriter argument it starts a word1818

processor, withprivate:factory/scalc it starts a spreadsheet etc. Whensoffice.bin is already running, if you1819

start another copy of it, it just instructs the already running copy to pop up a new window and exits.1820

In an experiment,soffice.bin has been invoked 7 times against running X server, with no arguments,private:factory/swriter ,1821

private:factory/scalc , private:factory/sdraw , private:factory/simpress , private:factory/smath1822

arguments (in all these cases nothing was pressed at all) and last with theprivate:factory/swriter argument1823

where the menu itemNew Presentation was selected and the word processor window closed. In all these cases,1824

/proc/‘pidof soffice.bin‘/maps file was captured and the application then killed. This file contains among1825

other things list of all shared libraries mmapped by the process at the point where it started waiting for user input1826

after loading up. These lists were then summarized, to get number of the runs in which particular shared library was1827

loaded up out of the total 7 runs. There were 38 shared libraries shipped as part ofOpenOffice.org package which1828

have been loaded in all 7 times, another 3 shared libraries included inOpenOffice.org (and also one shared library1829

shipped in another package,libdb cxx-4.1.so) which were loaded 6 times.22 There was one shared library loaded1830

in 5 runs, but was locale specific and thus not worth considering. InspectingOpenOffice.org source, these shared1831

libraries are never unloaded withdlclose , sosoffice.bin can be made much moreprelink friendly and thus save1832

substantial amount of startup time by linking against all those 76 shared libraries instead of just 34 shared libraries it is1833

linked against. In the timings below,soffice1.bin is the originalsoffice.bin as created by theOpenOffice.org1834

makefiles andsoffice3.bin is the same executable linked dynamically against additional 42 shared libraries. The1835

ordering of those 42 shared libraries matters for the number of conflict fixups, unfortunately with large C++ shared1836

libraries there is no obvious rule for ordering them as sometimes it is more useful when a shared library precedes its1837

dependency and sometimes vice versa, so a few different orderings were tried in several steps and always the one with1838

smallest number of conflict fixups was chosen. Still, the number of conflict fixups is quite high and big part of the1839

fixups are storing addresses ofPLT slots in the executable into various places in shared libraries23 soffice2.bin is1840

another experiment, where the executable itself is empty source file, all objects which were originally insoffice.bin1841

executable with the exception of start files were recompiled as position independent code and linked into a new shared1842

library. This reduced number of conflicts a lot and speeded up start up times againstsoffice3.bin when caches are1843

hot. It is a little bit slower thansoffice3.bin when running with cold caches (e.g. for the first time after bootup), as1844

there is one more shared library to load etc.1845

In the timings below, numbers forsoffice1.bin andsoffice2.bin resp.soffice3.bin cannot be easily com-1846

pared, assoffice1.bin loads less than half of the needed shared libraries which the remaining two executables load1847

and the time to load those shared libraries doesn’t show up there. Still, when it is prelinked it takes just slightly more1848

than two times longer to loadsoffice2.bin thansoffice1.bin and the times are still less than 7% of how long it1849

takes to load just the initial 34 shared libraries when not prelinking.1850

$ S=’s/ˆ *//’1851

$ ldd /usr/lib/openoffice/program/soffice1.bin | wc -l1852

341853

$ # Unprelinked system1854

$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice1.bin 2>&1 | sed "$S"1855

19095:1856

19095: runtime linker statistics:1857

19095: total startup time in dynamic loader: 159833582 clock cycles1858

19095: time needed for relocation: 155464174 clock cycles (97.2%)1859

19095: number of relocations: 311361860

19095: number of relocations from cache: 317021861

19095: number of relative relocations: 182841862

19095: time needed to load objects: 3919645 clock cycles (2.4%)1863

22In all runs but when ran without arguments. But when the application is started without any arguments, it cannot do any useful work, so one
loads one of the applications afterward anyway.

23This might get better when the linker is modified to handle calls without ever taking address of the function in executables specially, but only
testing it will actually show it up.

Jakub Jelı́nek Draft 0.7 39

Dra
ft

/usr/lib/openoffice/program/soffice1.bin X11 error: Can’t open display:1864

Set DISPLAY environment variable, use -display option1865

or check permissions of your X-Server1866

(See "man X" resp. "man xhost" for details)1867

19095:1868

19095: runtime linker statistics:1869

19095: final number of relocations: 317151870

19095: final number of relocations from cache: 317021871

$ # Prelinked system1872

$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice1.bin 2>&1 | sed "$S"1873

25759:1874

25759: runtime linker statistics:1875

25759: total startup time in dynamic loader: 4252397 clock cycles1876

25759: time needed for relocation: 1189840 clock cycles (27.9%)1877

25759: number of relocations: 01878

25759: number of relocations from cache: 21421879

25759: number of relative relocations: 01880

25759: time needed to load objects: 2604486 clock cycles (61.2%)1881

/usr/lib/openoffice/program/soffice1.bin X11 error: Can’t open display:1882

Set DISPLAY environment variable, use -display option1883

or check permissions of your X-Server1884

(See "man X" resp. "man xhost" for details)1885

25759:1886

25759: runtime linker statistics:1887

25759: final number of relocations: 241888

25759: final number of relocations from cache: 21421889

$ ldd /usr/lib/openoffice/program/soffice2.bin | wc -l1890

771891

$ # Unprelinked system1892

$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice2.bin 2>&1 | sed "$S"1893

19115:1894

19115: runtime linker statistics:1895

19115: total startup time in dynamic loader: 947793670 clock cycles1896

19115: time needed for relocation: 936895741 clock cycles (98.8%)1897

19115: number of relocations: 691641898

19115: number of relocations from cache: 945021899

19115: number of relative relocations: 593741900

19115: time needed to load objects: 10046486 clock cycles (1.0%)1901

/usr/lib/openoffice/program/soffice2.bin X11 error: Can’t open display:1902

Set DISPLAY environment variable, use -display option1903

or check permissions of your X-Server1904

(See "man X" resp. "man xhost" for details)1905

19115:1906

19115: runtime linker statistics:1907

19115: final number of relocations: 699661908

19115: final number of relocations from cache: 945021909

$ # Prelinked system1910

$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice2.bin 2>&1 | sed "$S"1911

25777:1912

25777: runtime linker statistics:1913

25777: total startup time in dynamic loader: 10952099 clock cycles1914

25777: time needed for relocation: 3254518 clock cycles (29.7%)1915

25777: number of relocations: 01916

25777: number of relocations from cache: 53091917

25777: number of relative relocations: 01918

25777: time needed to load objects: 6805013 clock cycles (62.1%)1919

/usr/lib/openoffice/program/soffice2.bin X11 error: Can’t open display:1920

Set DISPLAY environment variable, use -display option1921

or check permissions of your X-Server1922

(See "man X" resp. "man xhost" for details)1923

25777:1924

25777: runtime linker statistics:1925

25777: final number of relocations: 241926

25777: final number of relocations from cache: 53091927

40 Draft 0.7 Prelink

Dra
ft

$ ldd /usr/lib/openoffice/program/soffice3.bin | wc -l1928

761929

$ # Unprelinked system1930

$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice3.bin 2>&1 | sed "$S"1931

19131:1932

19131: runtime linker statistics:1933

19131: total startup time in dynamic loader: 852275754 clock cycles1934

19131: time needed for relocation: 840996859 clock cycles (98.6%)1935

19131: number of relocations: 683621936

19131: number of relocations from cache: 892131937

19131: number of relative relocations: 558311938

19131: time needed to load objects: 10170207 clock cycles (1.1%)1939

/usr/lib/openoffice/program/soffice3.bin X11 error: Can’t open display:1940

Set DISPLAY environment variable, use -display option1941

or check permissions of your X-Server1942

(See "man X" resp. "man xhost" for details)1943

19131:1944

19131: runtime linker statistics:1945

19131: final number of relocations: 691771946

19131: final number of relocations from cache: 892131947

$ # Prelinked system1948

$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice3.bin 2>&1 | sed "$S"1949

25847:1950

25847: runtime linker statistics:1951

25847: total startup time in dynamic loader: 12277407 clock cycles1952

25847: time needed for relocation: 4232915 clock cycles (34.4%)1953

25847: number of relocations: 01954

25847: number of relocations from cache: 89611955

25847: number of relative relocations: 01956

25847: time needed to load objects: 6925023 clock cycles (56.4%)1957

/usr/lib/openoffice/program/soffice3.bin X11 error: Can’t open display:1958

Set DISPLAY environment variable, use -display option1959

or check permissions of your X-Server1960

(See "man X" resp. "man xhost" for details)1961

25847:1962

25847: runtime linker statistics:1963

25847: final number of relocations: 241964

25847: final number of relocations from cache: 89611965

Listing 25: Dynamic linker statistics for unprelinked and prelinked OpenOffice.org

Below are measurement usingtime(1) for each of thesoffice.bin variants, prelinked and unprelinked.OpenOffice.org1966

was killed immediately after paintingWriter ’s window usingCtrl+Q .1967

Type Values (in seconds) Average Std.Dev.
unprelinked soffice1.bin private:factory/swriter

real 5.569 5.149 5.547 5.559 5.549 5.139 5.55 5.559 5.598 5.5595.478 0.1765
user 4.65 4.57 4.62 4.64 4.57 4.55 4.65 4.49 4.52 4.464.572 0.0680
sys 0.29 0.24 0.19 0.21 0.21 0.21 0.25 0.25 0.27 0.260.238 0.0319

prelinked soffice1.bin private:factory/swriter
real 4.946 4.899 5.291 4.879 4.879 4.898 5.299 4.901 4.887 4.9014.978 0.1681
user 4.23 4.27 4.18 4.24 4.17 4.22 4.15 4.25 4.26 4.314.228 0.0494
sys 0.22 0.22 0.24 0.26 0.3 0.26 0.29 0.17 0.21 0.230.24 0.0389

unprelinked soffice2.bin private:factory/swriter
real 5.575 5.166 5.592 5.149 5.571 5.559 5.159 5.157 5.569 5.1495.365 0.2201
user 4.59 4.5 4.57 4.37 4.47 4.57 4.56 4.41 4.63 4.5 4.517 0.0826
sys 0.24 0.24 0.21 0.34 0.27 0.19 0.19 0.27 0.19 0.290.243 0.0501

prelinked soffice2.bin private:factory/swriter
real 3.69 3.66 3.658 3.661 3.639 3.638 3.649 3.659 3.65 3.6593.656 0.0146
user 2.93 2.88 2.88 2.9 2.84 2.63 2.89 2.85 2.77 2.832.84 0.0860
sys 0.22 0.18 0.23 0.2 0.18 0.29 0.22 0.23 0.24 0.220.221 0.0318

Jakub Jelı́nek Draft 0.7 41

Dra
ft

Type Values (in seconds) Average Std.Dev.
unprelinked soffice3.bin private:factory/swriter

real 5.031 5.02 5.009 5.028 5.019 5.019 5.019 5.052 5.426 5.0295.065 0.1273
user 4.31 4.35 4.34 4.3 4.38 4.29 4.45 4.37 4.38 4.444.361 0.0547
sys 0.27 0.25 0.26 0.27 0.27 0.31 0.18 0.17 0.16 0.150.229 0.0576

prelinked soffice3.bin private:factory/swriter
real 3.705 3.669 3.659 3.669 3.66 3.659 3.659 3.661 3.668 3.6493.666 0.0151
user 2.86 2.88 2.85 2.84 2.83 2.86 2.84 2.91 2.86 2.8 2.853 0.0295
sys 0.26 0.19 0.27 0.25 0.24 0.23 0.28 0.21 0.21 0.270.241 0.0303

Table 2: OpenOffice.org start up times without and with prelinking

1968

15 Similar tools on other ELF using Operating Systems

Something similar toprelink is available on otherELF platforms. On Irix there isQUICKSTARTand on Solariscrle .1969

SGI QUICKSTARTis much closer toprelink from these two. Therqs program relocates libraries to (if possible)1970

unique virtual address space slot. The base address is either specified on the command line with the-l option, orrqs1971

uses aso locations registry with-c or -u options and finds a not yet occupied slot. This is similar to howprelink1972

lays out libraries without the-m option.1973

QUICKSTARTuses the same data structure for library lists (ElfNN Lib) as prelink , but uses more fields in it1974

(prelink doesn’t usel version and l flags fields at the moment) and uses different dynamic tags and section1975

type for it. Another difference is thatQUICKSTARTmakes all liblist sectionSHF ALLOC, whether in shared libraries or1976

executables.prelink only needs liblist section in the executable be allocated, liblist sections in shared libraries are1977

not allocated and used atprelink time only.1978

The biggest difference betweenQUICKSTARTandprelink is in how conflicts are encoded. SGI stores them in a1979

very compact format, as array of.dynsym section indexes for symbols which are conflicting. There is no information1980

publicly available what exactly SGI dynamic linker does when it is resolving the conflicts, so this is just a guess. Given1981

that the conflicts can be stored in a shared library or executable different to the shared library with the relocations1982

against the conflicting symbol and different to the shared library which the symbol was originally resolved to, there1983

doesn’t seem to be an obvious way how to handle the conflicts very cheaply. The dynamic linker probably collects1984

list of all conflicting symbol names, for each such symbol computesELF hash and walks hash buckets for this hash1985

of all shared libraries, looking for the symbol. Every time it finds the symbol, all relocations against it need to be1986

redone. Unlike this,prelink stores conflicts as an array ofElfNN Rela structures, with one entry for each shared1987

relocation against conflicting symbol in some shared library. This guarantees that there are no symbol lookups during1988

program startup (provided that shared libraries have not been changed after prelinking), while withQUICKSTARTwill1989

do some symbol lookups if there are any conflicts.QUICKSTARTputs conflict sections into the executable and every1990

shared library whererqs determines conflicts whileprelink stores them in the executable only (but the array is1991

typically much bigger). Disk space requirements for prelinked executables are certainly bigger than for requickstarted1992

executables, but which one has bigger runtime memory requirements is unclear. If prelinking can be used, all.rela*1993

and.rel* sections in the executable and all shared libraries are skipped, so they will not need to be paged in during1994

whole program’s life (with the exception of first and last pages in the relocation sections which can be paged in because1995

of other sections on the same page), but whole.gnu.conflict section needs to be paged in (read-only) and processed.1996

With QUICKSTART, probably all (much smaller) conflict sections need to be paged in and also likely for each conflict1997

whole relocation sections of each library which needs the conflict to be applied against.1998

In QUICKSTARTdocumentation, SGI says that conflicts are very costly and that developers should avoid them. Un-1999

fortunately, this is sometimes quite hard, especially with C++ shared libraries. It is unclear whetherrqs does any2000

optimizations to trim down the number of conflicts.2001

Sun took completely different approach. The dynamic linker provides adldump (const char *ipath, const2002

char *opath, int flags); function. ipath is supposed to be a path to anELF object loaded already in the current2003

process. This function creates a newELF object atopath, which is like theipath object, but relocated to the base address2004

which it has actually been mapped at in the current process and with some relocations (specified inflags bitmask)2005

42 Draft 0.7 Prelink

Dra
ft

applied as they have been resolved in the current process. Relocations, which have been applied, are overwritten in2006

the relocation sections withR * NONErelocations. Thecrle executable, in addition to other functions not related to2007

startup times, with some specific options uses thedldump function to dump all shared libraries a particular executable2008

uses (and the executable itself) into a new directory, with selected relocation classes being already applied. The main2009

disadvantage of this approach is that such alternate shared libraries are at least for most relocation classes not shareable2010

across different programs at all (and for those where they could be shareable a little bit there will be many relocations2011

left for the dynamic linker, so the speed gains will be small). Another disadvantage is that all relocation sections need2012

to be paged into the memory, just to find out that most of the relocations areR * NONE.2013

16 ELF extensions for prelink

Prelink needs a fewELF extensions for its data structures inELF objects. For list of dependencies at the time of2014

prelinking, a new section typeSHT GNULIBLIST is defined:2015

#define SHT_GNU_LIBLIST 0x6ffffff7 /* Prelink library list */2016

2017

typedef struct2018

{2019

Elf32_Word l_name; /* Name (string table index) */2020

Elf32_Word l_time_stamp; /* Timestamp */2021

Elf32_Word l_checksum; /* Checksum */2022

Elf32_Word l_version; /* Unused, should be zero */2023

Elf32_Word l_flags; /* Unused, should be zero */2024

} Elf32_Lib;2025

2026

typedef struct2027

{2028

Elf64_Word l_name; /* Name (string table index) */2029

Elf64_Word l_time_stamp; /* Timestamp */2030

Elf64_Word l_checksum; /* Checksum */2031

Elf64_Word l_version; /* Unused, should be zero */2032

Elf64_Word l_flags; /* Unused, should be zero */2033

} Elf64_Lib;2034

Listing 26: New structures and section type constants used byprelink

Introduces a few new special sections:2035

Name Type Attributes
In shared libraries

.gnu.liblist SHT GNU LIBLIST 0

.gnu.libstr SHT STRTAB 0

.gnu.prelinkundo SHT PROGBITS 0
In executables

.gnu.liblist SHT GNU LIBLIST SHF ALLOC

.gnu.conflict SHT RELA SHF ALLOC

.gnu.prelinkundo SHT PROGBITS 0

Table 3: Special sections introduced byprelink

2036

.gnu.liblist This section contains oneElfNN Lib structure for each shared library which the object has been pre-2037

Jakub Jelı́nek Draft 0.7 43

Dra
ft

linked against, in the order in which they appear in symbol search scope. Section’ssh link value should contain2038

section index of.gnu.libstr for shared libraries and section index of.dynsym for executables.l name field2039

contains the dependent library’s name as index into the section pointed bysh link field. l time stamp resp.2040

l checksum should contain copies ofDT GNUPRELINKEDresp.DT CHECKSUMvalues of the dependent library.2041

.gnu.conflict This section contains oneElfNN Rela structure for each neededprelink conflict fixup. r offset2042

field contains the absolute address at which the fixup needs to be applied,r addend the value that needs to be2043

stored at that location.ELFNNR SYMof r info field should be zero,ELFNNR TYPEof r info field should be2044

architecture specific relocation type which should be handled the same as for.rela.* sections on the archi-2045

tecture. ForEMALPHAmachine, all types withR ALPHAJMP SLOT in lowest 8 bits ofELF64 R TYPEshould be2046

handled asR ALPHAJMP SLOTrelocation, the upper 24 bits contains index in original.rela.plt section of the2047

R ALPHAJMP SLOTrelocation the fixup was created for.2048

.gnu.libstr This section contains strings for.gnu.liblist section in shared libraries where.gnu.liblist2049

section is not allocated.2050

.gnu.prelink undo This section containsprelink private data used forprelink --undo operation. This data in-2051

cludes the originalElfNN Ehdr of the object before prelinking and all its originalElfNN Phdr andElfNN Shdr2052

headers.2053

Prelink also defines 6 new dynamic tags:2054

#define DT_GNU_PRELINKED 0x6ffffdf5 /* Prelinking timestamp */2055

#define DT_GNU_CONFLICTSZ 0x6ffffdf6 /* Size of conflict section */2056

#define DT_GNU_LIBLISTSZ 0x6ffffdf7 /* Size of library list */2057

#define DT_CHECKSUM 0x6ffffdf8 /* Library checksum */2058

2059

#define DT_GNU_CONFLICT 0x6ffffef8 /* Start of conflict section */2060

#define DT_GNU_LIBLIST 0x6ffffef9 /* Library list */2061

Listing 27: Prelink dynamic tags

DT GNUPRELINKEDandDT CHECKSUMdynamic tags must be present in prelinked shared libraries. The corresponding2062

d un.d val fields should contain time when the library has been prelinked (in seconds since January, 1st, 1970, 00:002063

UTC) resp. CRC32checksum of all sections with one ofSHF ALLOC, SHF WRITEor SHF EXECINSTRbit set whose2064

type is notSHT NOBITS, in the order they appear in the shared library’s section header table, withDT GNUPRELINKED2065

andDT CHECKSUM dun.v val values set to 0 for the time of checksum computation.2066

The DT GNULIBLIST and DT GNULIBLISTSZ dynamic tags must be present in all prelinked executables. The2067

d un.d ptr value of theDT GNULIBLIST dynamic tag contains the virtual address of the.gnu.liblist section2068

in the executable andd un.d val of DT GNULIBLISTSZ tag contains its size in bytes.2069

DT GNUCONFLICTandDT GNUCONFLICTSZdynamic tags may be present in prelinked executables.d un.d ptr of2070

DT GNUCONFLICTdynamic tag contains the virtual address of.gnu.conflict section in the executable (if present)2071

andd un.d val of DT GNUCONFLICTSZtag contains its size in bytes.2072

A Glossary

Nomenclature2073

ASCII Shield areaFirst 16MB of address space on 32-bit architectures. These addresses have zeros in upper 8 bits,2074

which on little endian architectures are stored as last byte of the address and on big endian architectures as first2075

byte of the address. A zero byte terminates string, so it is hard to control the exact arguments of a function if2076

they are placed on the stack above the address. On big endian machines, it is even hard to control the low 242077

bits of the address,2078

44 Draft 0.7 Prelink

Dra
ft

Global Offset Table (GOT) When position independent code needs to build address which requires dynamic relocation,2079

instead of building it as constant in registers and applying a dynamic relocation against the read-only segment2080

(which would mean that any pages of the read-only segment where relocations are applied cannot be shared2081

between processes anymore), it loads the address from an offset table private to each shared library, which2082

is created by the linker. The table is in writable segment and relocations are applied against it. Position2083

independent code uses on most architectures a specialPIC register which points to the start of the Global2084

Offset Table,2085

Lazy Binding A way to postpone symbol lookups for calls until a function is called for the first time in particular2086

shared library. This decreases number of symbol lookups done during startup and symbols which are never2087

called don’t need to be looked up at all. Calls requiring relocations jump intoPLT, which is initially set up2088

so that a function in the dynamic linker is called to do symbol lookup. The looked up address is then stored2089

either into thePLT slot directly (if PLT is writable) or intoGOTentry corresponding to thePLT slot and any2090

subsequent calls already go directly to that address. Lazy binding can be turned off by settingLD BIND NOW=12091

in the environment. Prelinked programs never use lazy binding for the executable or any shared libraries not2092

loaded usingdlopen ,2093

Page Memory block of fixed size which virtual memory subsystem deals with as a unit. The size of the page depends2094

on the addressing hardware of the processor, typically pages are 4K or 8K, in some cases bigger,2095

PLT Process Linkage Table. Stubs inELF shared libraries and executables which allow lazy relocations of function2096

calls. They initially point to code which will do the symbol lookup. The result of this symbol lookup is2097

then stored in the Process Linkage Table and control transfered to the address symbol lookup returned. All2098

following calls to thePLT slot just branch to the already looked up address directly, no further symbol lookup2099

is needed,2100

Position Independent ExecutableA hybrid between classicalELF executables andELF shared libraries. It has a form2101

of a ET DYNobject like shared libraries and should contain position independent code, so that the kernel2102

can load the executable starting at random address to make certain security attacks harder. Unlike shared2103

libraries it containsDT DEBUGdynamic tag, must havePT INTERP segment with dynamic linker’s path, must2104

have meaningful code at itse entry and can use symbol lookup assumptions normal executables can make,2105

particularly that no symbol defined in the executable can be overridden by a shared library symbol,2106

REL Type of relocation structure which includes just offset, relocation type and symbol. Addend is taken from2107

memory location at offset,2108

RELA Type of relocation structure which includes offset, relocation type, symbol against which the relocation is and2109

an integer addend which is added to the symbol. Memory at offset is not supposed to be used by the relocation.2110

Some architectures got this implemented incorrectly and memory at offset is for some relocation types used by2111

the relocation, either in addition to addend or addend is not used at all.RELArelocations are generally better2112

for prelink , since whenprelink stores a pre-computed value into the memory location at offset, the addend2113

value is not lost,2114

relative relocationRelocation, which doesn’t need a symbol lookup, just adds a shared library load offset to certain2115

memory location (or locations),2116

RTTI C++ runtime type identification,2117

Symbol Search ScopeThe sequence ofELF objects in which a symbol is being looked up. When a symbol definition2118

is found, the searching stops and the found symbol is returned. Each program has a global search scope,2119

which starts by the executable, is typically followed by the immediate dependencies of the executable and2120

then their dependencies in breadth search order (where only first occurrence of each shared library is kept).2121

If DT FILTER or DT AUXILIARY dynamic tags are used the order is slightly different. Each shared library2122

loaded withdlopen has its own symbol search scope which contains that shared library and its dependencies.2123

Prelink operates also with natural symbol search scope of each shared library, which is the global symbol2124

search scope the shared library would have if it were started as the main program,2125

B References

[1] System V Application Binary Interface, Edition 4.1.2126

[2] System V Application Binary Interface, Intel 386 Architecture Processor Supplement.2127

Jakub Jelı́nek Draft 0.7 45

http://www.caldera.com/developers/devspecs/gabi41.pdf
http://www.caldera.com/developers/devspecs/abi386-4.pdf

Dra
ft

[3] System V Application Binary Interface, AMD64 Architecture Processor Supplement.2128

[4] System V Application Binary Interface, Intel Itanium Architecture Processor Supplement, Intel Corporation, 2001.2129

[5] Steve Zucker, Kari Karhi,System V Application Binary Interface, PowerPC Architecture Processor Supplement,2130

SunSoft, IBM, 1995.2131

[6] System V Application Binary Interface, PowerPC64 Architecture Processor Supplement.2132

[7] System V Application Binary Interface, ARM Architecture Processor Supplement.2133

[8] SPARC Compliance Definition, Version 2.4.1, SPARC International, Inc., 1999.2134

[9] Ulrich Drepper,How To Write Shared Libraries, Red Hat, Inc., 2003.2135

[10] Linker And Library Guide, Sun Microsystems, 2002.2136

[11] John R. Levine,Linkers and Loaders, 1999.2137

[12] Ulrich Drepper,ELF Handling For Thread-Local Storage, Red Hat, Inc., 2003.2138

[13] Alan Modra,PowerPC Specific Thread Local Storage ABI, 2003.2139

[14] Alan Modra,PowerPC64 Specific Thread Local Storage ABI, 2003.2140

[15] DWARF Debugging Information Format Version 2.2141

[16] DWARF Debugging Information Format Version 3, Draft, 2001.2142

[17] The ”stabs” debugging information format.2143

C Revision History

2003-11-03First draft.2144

46 Draft 0.7 Prelink

http://www.x86-64.org/cgi-bin/cvsweb.cgi/x86-64-ABI/
http://refspecs.freestandards.org/elf/IA64-SysV-psABI.pdf
http://refspecs.freestandards.org/elf/elfspec_ppc.pdf
http://refspecs.freestandards.org/elf/elfspec_ppc.pdf
http://refspecs.freestandards.org/elf/elfspec_ppc.pdf
ftp://ftp.linuxppc64.org/pub/people/amodra/PPC-elf64abi.txt.gz
http://www.arm.com/support/566FHT/$File/ARMELF.pdf
http://www.sparc.com/standards/SCD.2.4.1.ps.Z
http://people.redhat.com/drepper/dsohowto.pdf
http://docs.sun.com/db/doc/816-1386
http://www.gzlinux.org/docs/category/dev/c/linkerandloader.pdf
http://people.redhat.com/drepper/tls.pdf
ftp://ftp.linuxppc64.org/pub/people/amodra/ppc32tls.txt.gz
ftp://ftp.linuxppc64.org/pub/people/amodra/ppc64tls.txt.gz
http://www.eagercon.com/dwarf/dwarf-2.0.0.pdf
http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
http://sources.redhat.com/cgi-bin/cvsweb.cgi/src/gdb/doc/stabs.texinfo?cvsroot=src

	1 Preface
	2 Caching of symbol lookup results
	3 Prelink design
	4 Collecting executables and libraries which should be prelinked
	5 Assigning virtual address space slots
	6 Relocation of libraries
	7 REL to RELA conversion
	8 Conflicts
	9 Prelink optimizations to reduce number of conflict fixups
	10 Thread Local Storage support
	11 Prelinking of executables and shared libraries
	12 Prelink undo operation
	13 Verification of prelinked files
	14 Measurements
	15 Similar tools on other ELF using Operating Systems
	16 ELF extensions for prelink
	A Glossary
	B References
	C Revision History

