
System Crash Analysis

Imed Chihi <imed.chihi@gmail.com>
January 2009

Layout

● What's a crash? Why does it happen?

● Core dumps

● Analogy with userspace

● Collecting a process core

● Inspecting a process core

● Collecting a vmcore

● Inspecting a vmcore

What's a crash?

● Crash

● A very generic term used usually to say that the system has
come to halt and no progress is observed. The system
seems unresponsive or has already rebooted.

● Panic

● A voluntary halt to all system activity when an abnormal
situation is detected by the kernel.

● Oops

● Similar to panics, but the kernel deems that the situation is
not hopeless, so it kills the offending process and continues.

What's a crash?

● BUG()

● Similar to a panic, but is called by intentional code meant to
check abnormal conditions.

● Hang

● The system does not seem to be making any progress.
System does not respond to normal user interaction. Hangs
can be soft or hard.

The BUG() macro
● Called by kernel code when an abnormal situation is seen

● Typically indicates a programming error when triggered

● The calling code is intentional code written by the developer

● Calls look like:

 BUG_ON(in_interrupt());

● Inserts an invalid operand (0x0000) to serve as a landmark by
the trap handler

● Output looks like:

 Kernel BUG at spinlock:118
 invalid operand: 0000 [1] SMP
 CPU 0

Bad pointer handling
● Typically indicates a programming error

● Typically appear as:

NULL pointer dereference at
0x1122334455667788 ..

or maybe ..

Unable to handle kernel paging request at
virtual address 0x11223344

● Detection of those situations is hardware assisted (MMU)

● Typically due to:

● NULL pointer dereference

● Accessing a non-canonical address on AMD Opteron

● Accessing an illegal address on this architecture

Machine Check Exceptions
● Component failures detected and reported by the

hardware via an exception

● Typically looks like:

kernel: CPU 0: Machine Check Exception:
 4 Bank 0: b278c00000000175
kernel: TSC 4d9eab664a9a60
kernel: Kernel panic - not syncing: Machine
check

● To decode, pipe entire line through mcelog --ascii

● Always indicates a hardware problem

NMI watchdog

● A hardware mechanism available on modern hardware
(APIC) which detects CPU lockups

● When active, the “NMI” count should keep increasing
in /proc/interrupts

● When a CPU fails to acknowledge an NMI interrupt after
some time, the hardware triggers an interrupt and the
corresponding handler is executed. The handler would
typically call panic()

● Typically indicates a deadlock situation: a running
process attempts to a acquire a spinlock which is never
granted

EDAC
● Error Detection and Correction (aka BlueSmoke) is a

hardware mechanism to detect and report memory chip
and PCI transfer errors

● Introduced in RHEL 4 Update 3 for intel chips and in RHEL
4.5 for AMD chips

● Reported in /sys/devices/system/edac/{mc/,pci} and
logged by the kernel as:

EDAC MC0: CE page 0x283, offset 0xce0, grain 8,
syndrome 0x6ec3, row 0, channel 1 "DIMM_B1":
amd76x_edac

Other hardware reports
● Machine Check Architecture. I have never seen this on i386 and

x86_64.

● Machine Specific Register

● NMI notifications about ECC and other hardware problems.
Typically look like:

Uhhuh. NMI received. Dazed and confused, but
trying to continue
You probably have a hardware problem with your
RAM chips
Uhhuh. NMI received for unknown reason 32. Dazed
and confused, but trying to continue.
Do you have a strange power saving mode enabled?

Pseudo-hangs
● In certain situations, the system appears to be hang, but some

progress is being made

● Those situations include:

● Thrashing – continuous swapping with close to no useful
processing done

● Lower zone starvation – on i386 the low memory has a
special significance and the system may “hang” even when
there's plenty of free memory

● Memory starvation in one node in a NUMA system

● Hangs which are not detected by the hardware are trickier to
debug:

● Use [sysrq + t] to collect process stack traces when possible

● Enable the NMI watchdog which should detect those
situations

● Run hardware diagnostics when it's a hard hang:
memtest86, hp diagnostics

The OOM killer
● In certain memory starvation cases, the

OOM killer is triggered to force the
release of some memory by killing a
“suitable” process

● In severe starvation cases, the OOM
killer may have to panic the system
when no killable processes are found:

Kernel panic – not syncing: Out
of memory and no killable
processes...

Investigating “crashes”
● Take a memory image dump of the

process (or whole RAM) when the error
occurred

● Allows offline debugging
● Use gdb for userspace processes
● Use crash, a modified gdb, for kernel

dumps

Analogy with userspace
● signals ~ interrupts
● core ~ vmcore
● segfault ~ panic
● gdb ~ crash

User processes memory layout
#include <stdio.h>

#include <stdlib.h>
int main(int argc, char **argv) {
 int max_table_size = 200;
 int sum = 0;
 int i;
 int table_size;
 int *table;
 if (argc < 2) {
 fprintf(stderr, "Usage: %s <table_size>\n", argv[0]);
 return 1;
 }
 table_size = atoi(argv[1]);
 if (table_size > max_table_size) {
 fprintf(stderr, "table_size needs to be smaller than %d. \
 Aborting..\n", \
 max_table_size);
 return 1;
 }
 table = malloc(table_size*sizeof(int));
 for (i=0; i<table_size; i++) {
 fprintf(stdout, "%d ", table[i]);
 sum += table[i];
 }
 fprintf(stdout, "sum is %d.\n", sum);
 return 0;
}

User processes memory layout
#include <stdio.h>

#include <stdlib.h>
int main(int argc, char **argv) {
 int max_table_size = 200;
 int sum = 0;
 int i;
 int table_size;
 int *table;
 if (argc < 2) {
 fprintf(stderr, "Usage: %s <table_size>\n", argv[0]);
 return 1;
 }
 table_size = atoi(argv[1]);
 if (table_size > max_table_size) {
 fprintf(stderr, "table_size needs to be smaller than %d. \
 Aborting..\n", \
 max_table_size);
 return 1;
 }
 table = malloc(table_size*sizeof(int));
 for (i=0; i<table_size; i++) {
 fprintf(stdout, "%d ", table[i]);
 sum += table[i];
 }
 fprintf(stdout, "sum is %d.\n", sum);
 return 0;
}

Dumping a process core

● ulimit -c unlimited

● kill -SIGSEGV to force a core dump

● Inspect with:
gdb <path_to_binary> core.<pid>

● Need to build programmes with -g for debug
symbols

● Install -debuginfo packages on RHEL

Lab 1
Using gdb on cores

Collecting a vmcore -- netdump

● Server configuration

– install package netdump-server

– passwd netdump

– enable the server
● Client configuration

– install package netdump

– set NETDUMPADDR in /etc/sysconfig/netdump

– service netdump propagate

– enable the service

Collecting a vmcore -- diskdump
● install package diskdumputils
● modprobe diskdump
● set DEVICE in /etc/sysconfig/diskdump
● service diskdump initialformat
● enable the service
● savecore -v <dump_device>

Collecting a vmcore -- kdump
● set destination in /etc/kdump.conf
● service kdump propagate
● boot with crashkernel=128M@16M
● service kdump restart

Inspecting a vmcore
● Install -debuginfo from ftp.redhat.com
● Use crash
● Need to know how the code works

Lab 2
Collecting a vmcore
Analysing a vmcore

	Cover
	Plan
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	OS Architecture
	VM components
	Physical vs Virtual Memory
	Slide 20
	Slide 21
	Slide 22
	Slide 23

