Network Performance
Troubleshooting

Imed Chihi

Agenda

The transmit-receive sequences
Interrupt handling

Sockets

The TCP state machine

Lab - Networking: an application view
Lab - Networking: the packet level
Kernel buffers

TCP sliding window

IP fragmentation and re-assembly

Case study: NFS tuning

Transmission

Application

e] N
/ User data
@W\ J
PuR o (—
Socket @
0
ol
/
Device driven*
@ \ /\/ @ Kernel
N a—C
-

Network Interface Controller

Application calls write () to write to
the socket and the data is copied to the
kernel space

Kernel hands the data to the IP stack to
encapsulate it in a PDU

Kernel puts the PDU on a transmit
queue for the device in question

Device driver picks PDUs from the
queue and copies them to the NIC

NIC sends the PDU over the wire

NIC notifies the kernel about the
transmission completion by raising an
interrupt

Receive

Application

]
/ User data
_

e

Socket

Device drlver*

Kernel

/\/@
\ PERIO

[I:[I T

1

—
Network Interface Controller

NIC receive PDU from the network

NIC copies PDU into kernel buffers using
DMA

NIC notifies kernel about the received PDU by
raising an interrupt

Device driver acknowledges the interrupt and
schedules a softirqg

Kernel hands the PDU up to the IP stack for
routing decisions

Kernel extracts the data and copies it to the
corresponding socket buffer

Kernel notifies all processes waiting on the
socket

The read () call issued by the application
proceeds and data is copied into the

P L - P of

Interrupt handling - 1

Interrupts are handled by an interrupt controller: Advanced
Programmable Interrupt Controller (APIC)

NIC raises a hard interrupt at each event: packet reception or
transmission

Hard interrupt handling cannot be interrupted, may lockup the
system if it sleeps or takes too long to complete

Hard interrupt handlers perform minimal work and schedule
the remainder of the job to be handled asynchronously by a
softirg

Softirgs are processed as regular kernel code by special
kernel threads: ksoftirqd/X

Interrupt handling - 2

Kernel will drop packets if it cannot pick them from the NIC
quickly enough

Hard interrupts are reports in: /proc/interrupts
irgbalance balances hard interrupts across CPUs

Hard interrupt cost can be mitigated by interrupt coalescing

Sockets

A software construct used to present a file-like interface to
network communications

Analogous to file system objects handling: socket (),
read(),write() and close()

The socket () system call returns a file handle used to refer
to the connection in subsequent operations

The TCP state machine

Client transitions

Starting point
Server transitions
CLOSED

_——— + Appl: passie T

open 0 .

send: ::nn:uthlng .-----! s Appl.lactr-.fe apeEn

Recv:SYN: send:S YN-ACK — LI_S_IEN. App send data LS
Send: =Y
Recy RET Appl: close
Bere SYN sand SR ACK BY¥YMN SENT
—— simultaneaus open Reo SN ACK Or firneo ot
Recv:ACK; S send ACK
Anpl: |Close: send:<nothing.
il |lose . ESTABLISHED| HCLOSE WAIT]
clase [FIM
) Data transfer state Apnpl Send:
Appl: close dlose I fin i
Send:FIM
He v FIM Simultaneous close Send
Vsend: ACK : nnthlng
FIy WATT 1 CLOBTNG passive close
Recv ALK : | Recv: ACK
send: send A K

send: nothing

TINE WAIT

< nothings FIN WATT 2
i = = Recy:FIN

sand: A0 K QMSLtlmenut

Al:twe close

TCP 3-way handshake

SYN SYN and ACK are two out of 5

 » flags used by TCP

SYN floods are massive numbers

SYN, ACK of connection attempts without
/ subsequent ACKs

A duplex connection is established

%‘ One party can close its end of the
connection unilaterally
Too many half closed connections

may exhaust the allowed number
of sockets in the TIME WAIT state

client server Might use
net.ipv4.tcp tw recycle

Lab 1

Usage of sockets
nspecting TCP socket states

nspecting packets with tcpdump

nspecting some NIC hardware details

Optimising kernel buffers

Used for DMA transfers from NIC, socket buffers,
fragmentation and re-assembly

Buffers consume the low memory zone which might be
problematic on IA32 architectures

TCP reports its buffer size to the sender in order to enforce a
flow control

Can be adjusted by:

net.core.rmem default
net.core.rmem max
net.core.wmem default
net.core.wmem max

The bandwidth-delay product

If the sender waits until an ACK is
received for each packet sent, then

the transmission will be inefficient

Transmitter anticipates the reception
of ACKs and sends multiple packets

The transmitter needs to keep a
copy of the packet until it receives
an ACK for it. It might be lost

The receiver reports the size of its
buffer (window) with each ACK

Before receiving the first ACK, the

. _ transmitter can send
transmitter receliver bandwidth*RTT

Slow start implications

In early days of the Internet packet loss usually meant a
packet corruption due to bad links quality, the obvious remedy
was to retransmit

Modern networks are more reliable and packet loss usually
means a congestion at the routers. The old “remedy” of
retransmission actually worsens the problem

Modern TCP implementations would severely drop their
transmission rates when they detect a packet loss assuming a
congestion occurred

This makes correct tuning of buffers even more important to
networking performance

TCP-specific buffers (window)
TCP automatically adjusts the size of its sliding window with
net.ipv4.tcp window scaling
TCP buffers controlled by:
Overall TCP memory in pages: net.ipv4.tcp mem
Input/reader in Bytes: net.ipv4.tcp rmem

Output/writer in Bytes: net.ipv4.tcp wmem

Fragmentation and re-assembly
Most payloads of PDUs exceed the MTU of the underlying

physical network

Path MTU (lowest MTU across the path links) can be
“discovered”

NFS for instance transmits at least 8 KB packets which are
larger than the 1500-bytes Ethernet MTU

Fragmentation buffers adjusted using

Minimum size: net.1ipv4.ipfrag low thresh
Maximum size: net.1ipv4.1pfrag high thresh

Expiration time for fragments: net.ipv4.1ipfrag time

Fragmentation/re-assembly statistics

Summary statistics

netstat -s
Reassembly failures

cat /proc/net/snmp | grep '~“Ip:' | cut -f17
_dl |

Reassembly failures indicate a need to tune buffers

NFS and Denial of Service attacks are common causes of
high reassembly counts

Autonegotiation

NIC and switch negotiate duplex and speed using built-in logic

A correctly operating full duplex mode should resultin 0
collisions

Some devices do not implement autonegotiation properly. May
need to disable autonegotiation

Duplex and speed setting can be forced manually using
ethtool

TCP segmentation offloading

TCP segmentation and reassembly operations are quite
expensive

Some NICs implement the TCP reassembly logic in hardware

Check status with:

ethtool -k ethO
Enable with:

ethtool -K eth0® tso on

The same applies to receive and transmit checksumming

Lab 2

Observing the effects of buffer sizing

Watch the performance of NFS clients

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

