Crashes, Panics and Other Oddities

Imed Chihi <imed dot chihi at gee mail dot com> February 2008

Agenda

- "Defining" some terms
- Analogy with User Space
- The BUG() Macro
- Bad Pointer Handling
- The NMI Watchdog
- Machine Check Exceptions
- EDAC
- Other Hardware Reports
- Pseudo Hangs
- The Out of Memory Killer

"Defining" some terms

Crash

 A very generic term used usually to say that the system has come to halt and no progress is observed. The system seems unresponsive or has already rebooted.

Panic

 A voluntary halt to all system activity when an abnormal situation is detected by the kernel.

Oops

 Similar to panics, but the kernel deems that the situation is not hopeless, so it kills the offending process and continues.

"Defining" some terms

BUG()

 Similar to a panic, but is called by intentional code meant to check abnormal conditions.

Hang

 The system does not seem to be making any progress. System does not respond to normal user interaction. Hangs can be soft or hard.

Analogy with user-space

- signals ~ interrupts
- core ~ vmcore
- segfault ~ panic
- gdb ~ crash

The BUG() macro

- Called by kernel code when an abnormal situation is seen
- Typically indicates a programming error when triggered
- The calling code is intentional code written by the developer
- Calls look like:

```
BUG ON(in interrupt());
```

- Inserts an invalid operand (0x0000) to serve as a landmark by the trap handler
- Output looks like:

```
Kernel BUG at spinlock:118
invalid operand: 0000 [1] SMP
CPU 0
```

Bad Pointer Handling

- Typically indicates a programming error
- Typically appear as:

```
NULL pointer dereference at 0x1122334455667788 ..
```

or maybe ...

Unable to handle kernel paging request at virtual address 0x11223344

- Detection of those situations is hardware assisted (MMU)
- Typically due to:
 - NULL pointer dereference
 - Accessing a non-canonical address on AMD Opteron
 - Accessing an illegal address on this architecture

NMI watchdog

- A hardware mechanism available on modern hardware (APIC) which detects CPU lockups
- When active, the "NMI" count should keep increasing in /proc/interrupts
- When a CPU fails to acknowledge an NMI interrupt after some time, the hardware triggers an interrupt and the corresponding handler is executed. The handler would typically call panic()
- Typically indicates a deadlock situation: a running process attempts to a acquire a spinlock which is never granted

Machine Check Exceptions

- Component failures detected and reported by the hardware via an exception
- Typically looks like:

```
kernel: CPU 0: Machine Check Exception:
    4 Bank 0: b278c0000000175
kernel: TSC 4d9eab664a9a60
kernel: Kernel panic - not syncing: Machine check
```

- To decode, pipe entire line through mcelog --ascii
- Always indicates a hardware problem

EDAC

- Error Detection and Correction (aka BlueSmoke) is a hardware mechanism to detect and report memory chip and PCI transfer errors
- Introduced in RHEL 4 Update 3 for intel chips and in RHEL 4.5 for AMD chips
- Reported in /sys/devices/system/edac/{mc/,pci} and logged by the kernel as:

```
EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0, channel 1 "DIMM B1": amd76x_edac
```

Other Hardware Reports

- Machine Check Architecture. I have never seen this on i386 and x86_64.
- Machine Specific Register
- NMI notifications about ECC and other hardware problems. Typically look like:

Uhhuh. NMI received. Dazed and confused, but trying to continue You probably have a hardware problem with your RAM chips Uhhuh. NMI received for unknown reason 32. Dazed and confused, but trying to continue.

Do you have a strange power saving mode enabled?

Pseudo Hangs

- In certain situations, the system appears to be hang, but some progress is being made
- Those situations include:
 - Thrashing continuous swapping with close to no useful processing done
 - Lower zone starvation on i386 the low memory has a special significance and the system may "hang" even when there's plenty of free memory
 - Memory starvation in one node in a NUMA system
- Hangs which are not detected by the hardware are trickier to debug:
 - Use [sysrq + t] to collect process stack traces when possible
 - Enable the NMI watchdog which should detect those situations
 - Run hardware diagnostics when it's a hard hang: memtest86, hp diagnostics

The Out of Memory Killer

- In certain memory starvation cases, the OOM killer is triggered to force the release of some memory by killing a "suitable" process
- In severe starvation cases, the OOM killer may have to panic the system when no killable processes are found:

```
Kernel panic - not syncing: Out of memory and no killable processes...
```