Solaris to Linux Porting Guide

Ulrich Drepper
Red Hat, Inc.

1325 Chesapeake Terrace
Sunnyvale
California

94089
drepper@redhat.com

Solaris to Linux Porting Guide
by Ulrich Drepper

Copyright© 2000 Red Hat, Inc. All rights reserved.
The information contained in this document is provided for informational purposes only.

DISCLAIMER. NEITHER RED HAT OR OTHER PARTIES MAKE ANY REPRESENTATIONS
OF ANY KIND WITH RESPECT TO PRODUCTS REFERENCED HEREIN, WHETHER SUCH
PRODUCTS ARE THOSE OF RED HAT OR THIRD PARTIES. ANY WARRANTIES WHICH
MAY PERTAIN TO SUCH PRODUCTS ARE PROVIDED ONLY UPON THE PURCHASE
OR LICENSE OF SUCH PRODUCTS, AND NO WARRANTIES, IMPLIED OR EXPRESS,
INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, AND NON-INFRINGEMENT, ARE
EXPRESSLY DISCLAIMED. FURTHERMORE, RED HAT EXPRESSLY DISCLAIM ANY
WARRANTY ARISING OUT OF THE INFORMATION CONTAINED HEREIN, INCLUDING
WITHOUT LIMITATION, ANY PRODUCTS, SPECIFICATIONS, OR OTHER MATERIALS
REFERENCED HEREIN. RED HAT DOES NOT WARRANT THAT THIS DOCUMENT
IS FREE FROM ERRORS, OR THAT ANY PRODUCTS OR OTHER TECHNOLOGY
DEVELOPED IN CONFORMANCE WITH THIS DOCUMENT WILL PERFORM IN THE
INTENDED MANNER, OR WILL BE FREE FROM INFRINGEMENT OF THRID PARTY
PROPRIETARY RIGHTS, AND RED HAT DISCLAIMS ALL LIABILITIES THEREFOR .

RED HAT DOES NOT WARRANT THAT ANY PRODUCT REFERENCED HEREIN OR ANY
PRODUCT OR TECHNOLOGY DEVELOPED IN RELIANCE UPON THIS DOCUMENT, IN
WHOLE OR IN PART, WILL BE SUFFICIENT, ACCURATE, RELIABLE, COMPLETE, FREE
FROM DEFECTS OR SAFE FOR ITS INTENDED PURPOSE, NOR THAT THIS DOCUMENT
WILL BE UPDATED OR MAINTAINED, AND HEREBY DISCLAIM ALL LIABILITIES THERE-
FOR. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT OR TECHNOLOGY
DOES SO AT HIS OR HER OWN RISK.

Licenses may be required. Red Hat and other parties may have patents or pending patent appli-
cations, trademarks, copyrights or other intellectual proprietary rights covering subject matter
contained or described in this document. No license, express, implied, by estoppel or otherwise,
to any intellectual property rights Red Hat or any other party is granted herein. It is your re-
sponsibility to seek licenses for such intellectual property rights from Red Hat and other parties
where appropriate.

Limited License Grant. Red Hat hereby grants you a limited copyright license to download and
copy this document for your use and internal distribution only. You may not distribute this
document externally, in whole or in part, to any other person or entity.

LIMITED LIABILITY. IN NO EVENT SHALL RED HAT AND OTHER PARTIES HAVE ANY
LIABILITY TO YOU OR TO ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST
DATA, LOSS OF USE OR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES, OR FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF YOUR USE OF THIS DOCUMENT OR RELIANCE UPON THE INFORMATION
CONTAINED HEREIN, UNDER ANY CAUSE OF ACTION OR THEORY OF LIABILITY, AND
IRRESPECTIVE OF WHETHER RED HAT HAS ADVANCE NOTICE OF THE POSSIBILITY OF
SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING THE FAIL-
URE OF THE ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

Red Hat Linux is a trademark of Red Hat, Inc.
Solaris, SPARC, SPARCworks are trademarks of Sun Microsystems, Inc.

Linux is a trademark of Linus Torvalds.

All other trademarks are the property of their respective owners.

Revision History

Revision 1.1 , 2000-7-12

Minor changes to the legal notices.
Revision 1.0 ,2000-7-7

First published version.

Table of Contents

1. Introduction 7
ADOUL thiS GUIAEveiviiceiieeee ettt ettt et eae et ens 7

2. Development Tools 9
Language SUPPOTt.....ccocoiiiiiiiiiiii s 9

An Alternative Way ... 9

C Compiler FEaturesoorueieiiiiciiiciec s 10
Invoking the Compiler ..o 10

Language EXteNSIiONS ... 22

J IR 4Y S) A 70 Tar= 5 Lo) o WO PR 25

3. System Interfaces 29
Interfaces Missing On LINUX........ccccceieiiiiiiiiiiiiiiniiiiccccccccee s 29
Differing Interfaces Between Solaris and LinuxXccccooiriiiincniiicn 32
Limited Implementations...........cccccceurviiiiirirnnnnniiicccccceeeeeeenennes 32

Linux Development Environment Namespace Issues............cccoevvniiiinnnnn. 33

Chapter 1. Introduction

With the emergence of Linux as a viable computing platform, applications written
for other Unix platforms are being ported to Linux. This guide will help you do this
task. The focus is on porting applications from Solaris (in particular, on porting from
Solaris running on 32-bit SPARC processors to Linux running on Intel IA-32 proces-
sors). However, if an application follows the standard programming interfaces, you
can use this guide to port from other platforms.

Generally speaking, porting is quite simple. Because Solaris is a certified Unix imple-
mentation, it has passed the conformance tests of the Unix copyright holders. Linux
is also designed with conformance to the Unix standard in mind. Although Linux
has not undergone the conformance testing (due to the costs involved), chances are
that if the programmer used only the set of interfaces covered by the Unix standard,
you can reuse the code without any changes.

The porting problems that you can expect occur in several different areas:

* You cannot port from some special versions of the Solaris OS, such as Trusted So-
laris. There is not yet an equivalent to these special versions. However, as Sun has
not updated these versions of the OS since version 2.5.1, it is not likely that you
would be attempting such a port.

« The tools used on the different platforms are different. As Sun does not develop
tools for Linux, programmers who are using Sun’s tools on Solaris have to switch
their tools when doing the work on Linux. This can introduce additional problems
beyond the differences in the use of the tools. The languages the compilers accept
are slightly different (that is, they have different extensions on top of the base lan-
guage).

 The programming interfaces differ. While both operating systems are designed to
follow standards, differences in the implementations and different states of the im-
plementations are unavoidable. The programming environment is regulated by a
common standard (POSIX.2), but there is still room for differences and extensions.

About this Guide

The following discussion is based on the 7.x series of the Red Hat Linux distribution.
This series features the 2.4 version of the Linux kernel and the 2.2 version of the GNU
C library. Comparisons with older versions of either package are not discussed in this
paper. On the Solaris side, it is sufficient to discuss the latest version of the OS, Solaris
8.

Where useful, we discuss upcoming developments on the Linux side. When deficien-
cies in the Linux system are mentioned, take into account that the development of
Linux proceeds very rapidly and the described deficiencies might already be solved.
If a particular problem has not yet been solved, this need not prevent you from con-
tinuing. Because all of the core operating system is available under an Open Source li-
cense, you can either make appropriate changes yourself or contract out the changes.
Red Hat’s custom engineering services are available for such projects.

Chapter 1. Introduction

Chapter 2. Development Tools

The most notable difference for programmers going from Solaris to Linux is the
change in the development tools. The SPARCworks compilers from SunSoft, which
are the compilers predominantly used in Solaris development, are not available on
Linux. Linux developers predominantly use the GNU compiler collection (GCC). The
difference is not necessarily a problem, as the quality of the development tools on the
Linux side is equally high. It is only the use of SPARCworks-specific features is truly
a problem.

Language Support

Every program that uses only portable language features should not have problems.

C

There should not be any problems at all with compatibility of C programs. The
Linux C development and runtime environment is compatible with all the latest
standards.

C++

As all compilers are catching up with the latest language standards, incompati-
bilities due to compilers being at different stages of the race are unavoidable. The
compilers available on Linux are very well positioned in the conformance race
and changes happen daily. If you require the latest C++ compiler that supports
the most language features, it might be worthwhile getting a support contract
from Red Hat' for the compiler tools.

FORTRAN

One bigger problem is the support for FORTRAN. There is a GNU FORTRAN
compiler available and comes with the standard Red Hat Linux distribution, but
it currently supports only FORTRANY77. The more recent variants (FORTRAN90,
FORTRAND95) are not supported at all. There are commercial FORTRAN compil-
ers available for Linux, but you will need to purchase one.

Java

The Java support on Linux is very good. There are several JDK implementations
available for Linux and, with those, you can execute Java bytecode binaries. Even
the performance is comparable. In addition to the option of using bytecode, it is
also possible to use the GNU Java compiler to generate native code for the IA-
32. The resulting executable is many times faster than the interpreted byte code,
even if compiled just-in-time for execution.

An Alternative Way

One way to avoid the troubles with the changing development tools is to use the
GNU compilers on Solaris. This has been an option since the earliest days of the
GNU compiler and Solaris has always been one of the best supported platforms.

Many companies are taking advantage of this possibility because it allows retarget-
ting the applications even beyond SPARC and IA-32. The GNU compiler is available

Chapter 2. Development Tools

for all modern processors that have at least a 32-bit architecture, whether these are
for desktop, server, or embedded systems. This also includes support for the different
operating systems for those hardware types.

For companies considering porting to Linux, switching to using the GNU compiler
on the known Solaris platform makes the port much easier. Once the application can
be generated on Solaris using the new tools, you can then attempt to compile on
Linux. This will be easier because only API issues (not language issues) can impede
progress.

C Compiler Features

If applications were never deployed on other platforms, the code will certainly con-
tain some dependency on the platform on which it was developed. In this section
we will discuss the features that are related to the compiler. Information about the
system libraries will be given in a later section.

For the compiler we have to handle two compatibility issues:

Invoking the compiler

The command line options to select different modes differs significantly. Espe-
cially for writing highly optimized code, it is necessary to know some of the
options.

Language Features

Both the SPARCworks compiler and gcc have extended the C language. gcc does
this far more, but because the direction of porting is from Solaris to Linux, this
is not an issue.

Invoking the Compiler

10

In general, there is no standard for the form of command line options of compilers.
This leads to wide variations among the different compilers to a point where almost
no option is the same on all platforms.

The SPARCworks compiler and gcc agree on the form and function for the following
options:

Table 2-1. Common C Compiler Options

-C tells the compiler to compile, but not link

-0 FILE specify output file

-l DIR add include search directory

-L DIR add library search directory

-l name search and add a library with name libname.a (or .so)
-A name[(token)] define ISO C assertion

-D name[=val] define preprocessor macro

-Uname undefine preprocessor macro

Chapter 2. Development Tools

-C the object files are not linked together, object files are
created.

-g tell compiler to emit debugging information

-E the compiler performs only the preprocessing and writes

the result to standard output or to the file specified with -o

-S instructs the compiler to compile, but not assemble, the
code
-w inhibits printing warnings

All the other options the compilers understand are either understood by one side
and have no equivalent or are named differently. In the remainder of this section we
will cover the most important of these options. To ease the transition to Linux, the
list is sorted by the names of the options of the SPARCworks compiler. Names of the
option the GNU compiler understands are given in parenthesis if their function does
not exactly match that of Sun’s compiler.

Table 2-2. Differing Option of the C Compilers

SPARCworks gcc Option Description
Option
-# v The compiler shows the invocations of all

components on standard output. The gcc
equivalent shows the invocations on
standard error.

Sometimes the tools the compiler invokes
are not the last in the chain. gcc, for in-
stance, normally invokes a tool named
collect instead of invoking the linker di-
rectly. To see the invocation of the linker
(done by collect), add the -Wl,-v to gcc’s
command line.

-t Similar to -#, but the stages are not actually
executed. There is no equivalent in gcc.

-Bstatic -static Tells the compiler to statically link the
application. That is, the link editor will
look only for files named lib*.a

-Bdynamic (default) Tells the compiler to link the application
dynamically. That is, the compiler will
look first for files named lib*.so and, if
no such file exists, it will look for files
named lib*.a

11

Chapter 2. Development Tools

12

SPARCworks
Option

gcc Option

Description

-dy /-dn

(implicit)

The compiler generates a dynamic
executable. That is, the runtime linker is
used to finish generating the executable.
On Linux this happens implicitly. If an
object is linked against any shared object,
it is a dynamic binary. Similarly, of an
object is linked without the use of any
shared object, the program is linked
statically and the runtime linker is not
needed.

-dalign

-malign-double

The compiler is allowed to use
double-word load and store assembly
instructions. This is a SPARC-specific
option that is tailored for the SPARC
instruction set.

The -malign-double option of gcc serves
a similar purpose. This tells the compiler
to possibly waste some memory (espe-
cially stack space) to ensure the double
and long double variables are always ac-
cessed aligned.

-err=warn

-Werrors

Treat all warnings as errors.

-erroff=tag

(-w)

Disable printing specific warnings based
on their tag number. There is no direct
equivalent in gcc, but you can inhibit all
warnings completely with -w.

-errtags=yes

Show error message tags. There is no gcc
equivalent.

Chapter 2. Development Tools

SPARCworks
Option

gcc Option

Description

-fast

-O

The compiler enables options to
maximize execution speed of the
compiled application.

gcc controls the optimizations to be per-
formed using the -O option. With -02, all
optimizations but one are enabled. You
can combine this with several machine-
dependent options, such as -fomit-
frame-pointer , -malign-double
-fstrict-aliasing , -fargument-
noalias-global , and others.

Using -O3 adds a more aggressive inlining
optimization. This does not always lead
to improvements because the possibly in-
creased code size and the additional cache
misses could undo the advantages of in-
lining.

-Wstrict-
prototypes

The compiler warns about K&R-style
function declarations and definitions.

-flags

--help -v

Print summary of available options. When
using gcc, use the options --help -v to
get a summary for all available compilers
(includes C++, Java, FORTRAN and
others, if they are available).

-fnonstd

The floating-point arithmetic hardware is
initialized in a non-standard way and
signals are used to notify the program of
raised exceptions. These signals will
cause the application to dump a core if
not caught.

There is no direct equivalent for gcc. The
program can cause the ISO C99 function
to modify the floating-point control word
of the FPU (for example, using fesetenv).
It is also possible to use the special symbol
LIB_VERSION. Linking a program with
an object file containing a definition of a
variable with this name enables you to se-
lect the mode in which the compiler works
(possible values are those from the enum
_LIB_VERSION_TYPE in <math.h >).

13

Chapter 2. Development Tools

SPARCworks
Option

gcc Option

Description

-fns

Part of what -fnonstd does (enable the
non-standard arithmetic).

-fround =mode

Select the rounding mode for the program.
The default IEEE mode is
round-to-nearest. This is also the case on
Linux, but there is no option to select a
different mode. Use the ISO C99 interface
fesetround to select the appropriate
rounding mode.

-fsimple =[012]

Values other than 0 (which is the default)
allow the compiler to make simplifying
assumptions about floating-point
arithmetic that might leads to accuracy
loss or to different behavior (if the
programs depend on exceptions raised).
With the option -ffast-math , gcc also
performs Architecture-dependent simpli-
fications that can violate IEEE 754.

-fsingle

The compiler evaluates expressions using
float arithmetic instead of double. This
might improve execution on SPARC. For
the IA-32 compiler there is in most cases
no difference. To force evaluating all
expressions as float, you can force the
compiler to treat double as float by using
the option -fshort-double , but this is not
really an equivalent.

-ftrap= mode

Turns on trapping for the specified
floating-point conditions. On Linux. use
the portable ISO C99 interfaces.

-shared

The linker creates a shared object instead
of an executable.

-M/-MM

Print path name of each of the files being
compiled. Options with similar effects
exist on Linux. You can use the -M and -MM
options can be used to write this
information out in a form usable to
generate make(1) rules.

-h name

-WI,--soname,
name

Enables you to assign a name to the
generated shared object. With gcc this has
to be communicated to the linker using the
option -Wl,--soname,name where the last
component name is the name you want to

give the shared object.

Chapter 2. Development Tools

SPARCworks
Option

gcc Option

Description

-keeptmp

-save-temps

Temporary files (such as assembly files)
are not removed.

-KPIC

-fPIC

Tells the compiler to generate
position-independent code. This option
allows for the maximum possible number
of symbols (as opposed to -kpic). With
gcc the option is -fPIC . There is also an
equivalent -fpic option but for IA-32 this
option makes no difference at all.

-Kpic

-fpic

See -KPIC . The gcc equivalent is -fpic

-misalign

(implicit)

Tells the compiler that some data is
misaligned and therefore conservative
load and store instructions must be used.
This is not necessary on IA-32 because the
processor handles alignment by itself.

-misalign2

Similar to -misalign . It also does not
apply for IA-32.

-mr

Removed all comments from the
.comment section. This is not handled by
gcc.

-mtsafe

-pthread

Passes -D_REENTRANT to the
preprocessor and adds -lthread to the
-mt linker line.

On Linux, -pthread behaves the same ex-
cept that -Ipthread is added to the linker
line.

-native

(-b)

Directs the compiler to generate code for

the native platform. There is no direct flag
to do this with gcc. However, if you know
the platform name, you can use the -b flag

to select the appropriate target compiler.

15

Chapter 2. Development Tools

SPARCworks
Option

gcc Option

Description

-nofstore

Tells the compiler not to convert a
floating-point value to a smaller type if
the value is needed again immediately.
Instead the value is left in a floating-point
register, which means the precision of the
expression is higher.

gcc has the flag -ffloat-store which has
the opposite meaning. The non-standard
behavior is the default; to get true IEEE
754 results on x86, use the -ffloat-store

flag.

-noqueue

Queue compile request until license is
available. This is completely unnecessary
on Linux because there is no license.

Compiler preprocesses only the
corresponding C files. There is no
equivalent with gcc.

-p /-profile

Prepare program for profiling with gprof.
It also links with -gp special versions of
the libc and libm libraries.

There is a -p option for gcc on Linux/IA-
32 as well. It also prepares the binary for
profiling, but it does not cause the profil-
ing versions of the libraries to be linked
in. To link in the profiling versions of
the libc library, use the -profile op-
tion. Note that this handles only libc , not
libm .

-R dirlist

-WI,-rpath,
dirlist

The compiler instructs the linker to add
the dirlist as the runtime search path for
the dynamic linker to the binary.

\WI,-S / (-W,-s

)

Remove all symbolic debugging
information from the output file. With gcc
one has to use -WI|,-S . There is also the
option of using -Wl,-s to remove all
symbol information.

-V

Print information about version of each
tool as they get started. When using gcc
this information is contained in the output

of -v .

16

Chapter 2. Development Tools

SPARCworks
Option

gcc Option

Description

-V

-Wall

The compiler will perform more semantic
checks and performs lint-like tests. You
can achieve this with gcc by using the
-Wall option and possibly other -W
options that are not included in -wall .

-We, arg

-We, arg

Tells the compiler to pass arg as an
argument to the tool named by c. This
option exists in the same form on gcc, but
the tools have different names and not all
tools are supported by gcc. The tools that
have equivalents in gcc are:

Assembler: SPARCworks uses the name
fbe or gas, while gcc uses a.

Linker: SPARCworks uses the name 1d,
while gec uses 1.

Preprocessor: SPARCworks uses the name
cpp, while gcc uses p.

No other tools have equivalents.

-X[alcls|t]

Select various degrees of compliance with
ISO C. There are no different levels of the
tests in gcc, but the -pedantic option is
available to perform stricter tests.

The -traditional option allowed you to
test for K&R C, which is equivalent to the
-Xs option, but it is not really possible to
use this option on Linux anymore. The C
library is an ISO C library and conflicts in
many cases with the -pedantic option.

-x386

-mcpu=i386 /
-march=i386

Optimizes for the i386 processor. The
equivalent option For gcc is -mcpu=i386 .
The resulting code will run on all x86
processors that are capable of supporting
the mode.

To compile code that is even better opti-
mized for the given architecture (but prob-
ably will not run on older processors), use
the -march=i386 option.

-x486

-mcpu=i486 /

-march=i486

Similar to -x386 , but for the 486

rocessor.

17

Chapter 2. Development Tools

18

SPARCworks gcc Option Description
Option
-xa -a /-ax Insert code for basic block invocation

counting. For gcc this option is -a .
Instead of using the tcov tool, you must
use the GNU version gcov to process the
output.

To get even more detailed information,
use the -ax option to enable jump profil-
ing as well.

-xarch= name

-march= name

Selects a specific instruction set to be
used. Often allowing the instruction sets
of more modern processor variants means
that the program can be optimized better.
With gcc the equivalent option is -march .
For x86, the possible names are i386, 1486,
1586, and 1686.

-xautopar Turns on the automatic parallelization.
There is no equivalent for gcc.
-xcache Defines cache properties for the optimizer.

There is no equivalent for gcc.

-xchip= name

Selects the target processor. This is
handled by -march in gcc. (See -xarch .)

-xcrossfile Enable optimization and inlining across
source files. There is no equivalent for gcc.

-xdepend Collects information for inter-iteration
data dependencies. Some of these
optimizations might be performed by gcc
with some of its optimization passes, but
there is no specific option.

-Xe -fsyntax-only Perform syntax checks only.

-xexplicitpar Loops that are explicitly marked are
parallelized. There is no equivalent in gcc.

-xF Enable use of the Analyzer tool. There is
no equivalent in gcc.

-xhelp=what --help -v Shows help information about what. You
can use --help -v with gcc to get help
about the flags.

-xildon /- Enable/Disable incremental linker. There

xildoff is no equivalent in gcc.

Chapter 2. Development Tools

SPARCworks
Option

gcc Option

Description

-xinline= fct,

Inline only the functions specified in the
list.

-xlibmieee

Math routines return IEEE 754 style return
values for exceptional cases. This is the
default (-lieee can be used to, if
necessary, overwrite conflicting selections)
and the -ffast-math flag must be used.

-xlibmil

-ffast-math

Some math library functions are inlined.

The gcc equivalent, -ffast-math , might

introduce different results due to different
recision.

-xlicinfo

Retrieve license information. Does not
apply to gcc because there are no licenses
to get.

-xloopinfo

Give information about loops that are
arallelized.

-XM

Generate makefile dependencies.

-xM1

(-MM

Same as -M, but dependencies on files in
/usr/include are not reported. The option
-MMdoes something similar for gcc, but
gcc avoids dependencies for files from the
system directories. System directories do
not always include /usr/include and
often do include other directories.

-xnolib

-nostdlib

Does not automatically link in any
libraries.

-xnolibmil

(default)

Prevents inlining math functions. This is
the default in gcc and can be enforced with
-fno-fast-math

-xO

Select the optimization level.

-xP

Print prototypes for K&R function
definitions. There is no gcc equivalent.

-xparallel

Automatically parallelize loops, but also
let the user specify what to do.

~XPg

-P9

The files are compiled with preparation
for gprof -based profiling.

-xprofile=
collect

-finstrument-
functions

Instruct the compiler to generate code for
collecting profiling information.

-xprofile= use

-fbranch-
probabilities

Use the information from various runs of a
program compiled with
-xprofile=collect

19

Chapter 2. Development Tools

20

SPARCworks gcc Option Description
Option
-xprofile= tcov -a The program will emit information which

then can be examined using the tcov tool.
To achieve the same result with gcc, use
the -a option to instrument the code, then
use gcov .

-xreduction

The compiler performs reductions for
automatic parallelization. gcc performs
strength reduction optimizations;
however, they are not geared towards
automatic parallelization.

-Xregs=names

-fixed- <reg >/
-fcall-used-

<reg >/
-fcall-saved-

<reg >

Specifies the usage of registers for the
generated code. With gcc you can use the

options
-ffixed- <reg > ,-fcall-used- <reg >,
and -fcall-saved- <reg > to specify the

use of certain registers.

-xrestrict

(see comments)

Enables you to specify handling of
pointed-valued function parameters. By
default no assumptions are made about
the restrictiveness. With -xrestrict=all

you can tell the compiler that all
parameters should be considered
restricted.

gcc has the options -fargument-noalias

to do the same as -xrestrict=all . With -
fargument-noalias-global you tell the
compiler that parameters are not even
aliasing global data.

Note that programmers should start us-
ing the ISO C99 keyword restrict to mark
function parameter which are not aliasing
other values. gcc recognizes the keyword
and performs appropriate optimizations.

-xsafe=mem

Allows the compiler to generate
speculative loads. The IA-32 processors do
not provide such a feature.

-xsh

Instructs the compiler to generate
additional symbol tables for the source
code browser. This is specific to Sun’s IDE
and therefore has no equivalent in gcc.

-xsbfast

Similar to -xsb .

Chapter 2. Development Tools

SPARCworks
Option

gcc Option

Description

-xsfpconst

(-fshort-double

Unsuffix floating point variables are
treated as float instead of the default
double. gcc provides the option
-fshort-double which tells gcc to use the
same size for double as for float. This is
not the same but if double values are not
used in the compilation unit, it is close
enough.

-xspace

-Os

Perform only optimizations that do not
increase the code size.

-xstrconst

(default)

String literals are inserted into the
read-only data section. This is the default
with gcc. To get the default behavior of the
Sun compiler, use the option
-fwritable-strings

-xtarget= name

Select the target platform for the
compilation. With gcc it is necessary to
know the name of the target and then use
the option -b to pass the information to the
compiler.

-xtemp=dir

(see comments)

Set directory for temporary files. With gcc,
set the environment variable TMPDIR to
the name of the directory you want to use.

-xtime

The compiler reports the time and
resources used for the compilation.

-xtransition

The compiler warns about differences
between K&R and ISO C. There is no
option to explicitly enable this. gcc warns
in general about ISO C rule violations. To
not be warned, you must use the
-traditional option to explicitly allow
K&R behavior.

-xunroll= n

-funroll-
loops /-funroll-
all-loops

Instructs the compiler to unroll loops. You
can use the option -funroll-loops to
instruct gce to unroll loops with known
iteration counts. To unroll loops with
unknown iteration counts, use
-funroll-all-loops

-xvpara

Involves warnings about a SPARCworks
compiler specific #pragma and therefore is

not supported by gcc.

21

Chapter 2. Development Tools

SPARCworks gcc Option Description
Option
-Yc, dir (-B) Specifies that the component c of the

compiler can be found in directory dir.
There is no gcc option that exactly matches
this option. However, gcc has an option -B
that takes a directory name as the
parameter. The given directory will be
searched for any of the components
binaries. It is possible to repeat the -B
parameter and so provide more than one
directory with binaries.

-ZIl Creates a lock_lint database for the
lock_lint tool. Because this is a Sun-specific
tool there is no equivalent on gcc.

-Zlp Creates a lock_lint database for the
looptool tool. Because this is a Sun-specific
tool there is no equivalent on gcc.

-Ztha Creates a lock_lint database for the thread
analyzer tool. Because this is a Sun-specific
tool there is no equivalent on gcc.

Language Extensions

22

The SPARCworks compiler as well as gcc extend the C language. In the following we
are describing the extensions of the SPARCworks compiler and possible equivalences
on the gcc-side. The extensions are exclusively in the form of #pragmas .

gcc generally does not use #pragmas . The reason is that the old, pre-ISO C99, form
of pragmas cannot be generated in macros. This changed with the introduction of
_Pragma in ISO C99. Anyhow, gcc uses the keyword __attribute__ which can be used
to add information to a definition or declaration of an object. The __attribute__ key-
word is followed by two opening parenthesis. The reason for this is that it enables
you to define a macro

#define __attribute__ (ignore)

which can be used if the compiler does not understand attributes. More on the syn-
tax can be found in the following table and the gcc manual. All the keywords (like
__attribute__and __aligned_) are given in the form with two leading and two trail-
ing underscore characters. They are also available without underscores or with only
two leading underscores. But these names potentially conflict with names in the user
programs or the system. The safest possible solution is to use the names used here.

One has to be careful not to miss a use of #pragma in a converted program since gcc
simply ignores #pragmas it does not know. Only when the -Wall option is used will
it warn about ignored #pragmas .

#pragma align integer (variable [, variable])

The variables mentioned in the list are all aligned in memory at an address con-

Chapter 2. Development Tools

gruent to integer
With gcc one has to mark the variable with an attribute:
double d __ attribute_ ((__aligned__ (16)));

#pragma init (fct [, fct])

The functions named in the list are marked as constructors which are run before
the program transfers control to the user code.

gcc uses the following syntax to define such a function:

void

__attribute_ ((__constructor__))
fct (void)

{

}

#pragma fini (fct [, fct])

The functions named in the list are marked as destructors which are run before
the program terminates.

gcc uses the following syntax to define such a function:

void

__attribute__ ((__destructor_))
fct (void)

{

}

#pragma weak name[, name]

This #pragma can be used to specify that a symbol is created weak. gcc also
recognizes this #pragma . It is nevertheless advised to use the attribute form:

int a __ attribute__ ((_weak_)) = 1;

#pragma redefine_extname oldname newname

This pragma enables you to assign to a C symbol a different external linkage
name. This is also possible with gcc when using the following syntax:

extern int oldname (int) __asm__ ("newname");

#pragma ident "string"

The SPARCworks compiler puts the provided string in the .comment section.
With gcc one must use

#ident "string"

23

Chapter 2. Development Tools

24

#pragma int_to_unsigned fct

Marks the function which returns an unsigned value as returning an int. There
is no gcc equivalent.

#pragma nomemorydepend

Instructs the compiler that there are no memory dependencies for any of the
iterations of a loop.

There is no single flag which can be used to signal to gcc this fact. But by us-
ing the restrict keyword for participating pointer and arrays, the compiler can
automatically deduce this information.

#pragma no_side_effect (fct)

Declares that the named function has no side effects of any kind. gcc has a finer-
grained mechanism for the user to use.

If a function has no effects except the return value and the return value depends
only on the parameters and the values of global variables, one can declare such
a function as pure:

extern int square (int) __ attribute__ ((__pure_));

Note that the declaration and not the definition is marked. This is necessary since
the generated code is not changing. The compiler can possibly optimize uses of
the function which then can be subject of common subexpression elimination.

One step further go functions which entirely depend only on their parameters
and also have their return value as the only effect. These functions can be marked
as const:

extern int abs (int) _ attribute_ ((__const_));

#pragma pack(n)

This #pragma specifies that the named structure is packed, i.e., laid out without
padding. The gcc way of expressing this is:

struct foo

{

} ;attribute_ ((__packed_));

This form will pack the structure to the most compact form. But gcc enables you
to express even more. One can force individual structure members to be packed
while other members are aligned in the normal way. The syntax for this is similar
to the following:

struct foo

{
char c;
short int a __ attribute_ ((__packed_));
short int b;

kh

Chapter 2. Development Tools

In this case the member a is not aligned but instead follows immediately the
member a in memory at offset 1. The member b is aligned and follows on offset
4.

#pragma pipeloop(n)

The SPARCworks compiler allows you to specify using the #pragma the mini-
mum dependence distance of the loop-carried dependence. There is no equiva-
lent in gcc.

#pragma unknown_control_flow(name[, name])
Specifies names of functions which violate normal control flow properties.

There is no general way to express this with gcc. But it is possible to mark func-
tions which never return so that the compiler does not have to generate code to
deal with the return program flow. This happens with the attribute noreturn:

extern void abort (void) __ attribute_ ((__noreturn_));
This helps in situations like

if (condition)
abort ();

else
some_other_function();

where no code has to be generated for the if branch to jump behind the else
branch.

#pragma unroll(n)

This #pragma allows the programmer to suggest to the compiler an unroll factor
for a loop. There is no equivalent in gcc. Future versions of gcc will include
support for software pipelining when some similar way to instruct the compiler
will be needed.

Linker Invocation

Next to the compiler, the linker is the most important tool. It controls the final form of
the program code and can improve the code generation significantly. Both Sun’s and
the GNU linker accept numerous options. We’ll explain in the following list the most
important options of the SPARCworks linker which are not available with the same
name in the GNU linker and relate them, if possible, to functionality of the GNU
linker. It is also advised that you read the documentation for the GNU linker to find
out about the functionality which is not available in Sun’s linker.

Table 2-3. Linker Options

SPARCworks gld Option Description
Option

25

Chapter 2. Development Tools

SPARCworks
Option

gld Option

Description

-a

-static

This option enables the default behavior in
the static mode. The linker is creating an
executable and undefined symbols cause
error messages.

GNU Id has the option -static which also en-
ables this behavior.

(see comment)

If this option is given the linker does not
generate special -fPIC relocations for
accessing for symbols in shared object
which would allow the code to be shared.
Instead it creates faster, direct references
which cause the text section to become
non-sharable.

There is no option for the GNU linker to
achieve this. It can be achieved, though, by
not compiling the source code with the op-
tion -fPIC /-fpic

-shared

Generate a shared object. The equivalent for
the GNU linker is -shared .

Ignore the LD_LIBRARY_PATH
environment variable. There is no equivalent
for the GNU linker.

Print a linker map. The -M option prints
something comparable but with a different
format and slightly different content.

This option instructs the linker to strip
symbolic information from the output file.
The GNU linker has a finer grain for this
functionality.

If the -s option is used, the GNU linker
strips all symbols from the file. This is much
more than Sun’s linker does. To get the
equivalent of the -s option, one has to use -
S with the GNU linker, which removes only
the debugging information.

This option allows you to turn off warnings
about multiply defined symbols that are not
the same size. There is no equivalent in the

GNU linker.

26

Chapter 2. Development Tools

SPARCworks
Option

gld Option

Description

-B eliminate

This option causes the linker to eliminate all
symbols not assigned to any version from
the symbol table. There is no equivalent in
the GNU linker.

-B group

Establishes a shared object and its
dependencies as a group. There is no
equivalent in the GNU linker.

-B local

This option causes the linker to reduce
symbols not assigned to a version to local.
\With the GNU linker this can only be
achieved using the wildcard matching in a
version definition file.

-B reduce

Reduces symbolic information according to
version specification when generating a
relocatable object. There is no equivalent in
the GNU linker.

-D token [, token]

The linker prints debugging information
according to the tokens. There is no
equivalence in the GNU linker.

-h name

-Soname name

Set name as the shared object name. With the
GNU linker the option -soname must be
used.

-l name

--dynamic-
linker name

Set name as the interpreter in the program
header of an executable. The equivalent
option for the GNU linker is
--dynamic-liner name.

-M file

--version-
script file

Specifies that the linker should use the
named file as the mapfile. The GNU linker
uses the option --version-script

-N string

Causes the linker to add a DT_NEEDED
entry with the given string as value to the
dynamic section of the generated object. This
cannot directly be achieved using the GNU
linker. Instead one will have to link against a
shared object with this string is the name.

-P auditlib

Specifies audit library. There is no equivalent
in the GNU linker.

-Qy

(ignored)

Sun’s linker adds a string identifying the
linker to the comment section of the
generated binary. This option is ignored for
compatibility by the GNU linker. To emulate
the behavior one could create such a string in
the input files (using the #ident directive) or

use the linker script to add it automatically.

27

Chapter 2. Development Tools

SPARCworks gld Option Description
Option
-R path -rpath path This option specifies the search direction to
the runtime linker. The GNU linker uses the
option -rpath
Note: Since the DT_RPATH tag of the ELF
binary format is deprecated and replaced
with a DT_RUNPATH tag, it is likely that at
some point the GNU linker will have an
option -runpath
-z allextract /-z These options allow you to modify the rules
defaultextract for extracting members from an archive.
/-z weakextract There is no equivalent in the GNU linker.
-z combreloc Combines multiple relocation sections into
one. There is currently no equivalent in the
GNU linker.
-z defs --no- lUndefined symbols at the end of the linking
undefined process will cause a fatal error. This option is

ignored by the GNU linker and the user has
to use the option --no-undefined to
achieve the same results.

-z endfiltee Marks a terminal filter object. There is no
equivalent in the GNU linker.
-z initfirst Marks the object as having its runtime

initialization function to be run first. There is
no equivalent in the GNU linker.

-z lazyload /-z
nolazyload

Enables and disables respectively lazy
loading of dynamic dependencies. There is
no equivalent in the GNU linker.

-z loadfltr

If this option is used when creating a shared
object and the object is used by a filter, the
dynamic linker knows that the object must
be processed immediately at startup time.
There is no equivalent in the GNU linker.

-z nodlopen

Marks a shared object as not being available
to dlopen . The same option is understood by
the GNU linker.

-z nodelete

Marks a shared object as not deletable even
so that it does not get removed even if the
program tells the system to unload the
object. The same option is understood by the
GNU linker.

Notes

1. http://www.redhat.com/services/gnupro/gnupro_plus.html

28

Chapter 3. System Interfaces

The system interfaces, as defined by the standard libraries such as libc , libm , and
libpthread , make Linux appears as an almost complete Unix system. There are only
a few function families and individual functions missing and a very small number of
functions have a different, possibly limited behavior.

In this section we will first introduce the functions which are entirely missing on
Linux. We will only cover the standard interfaces and a few very important and
widely used other interfaces.

We will discuss interfaces which are different or have a limited functionality (mostly
on the Linux side). Knowing about this can save a lot of debugging time.

But before we start, a few more words on the standards. Solaris is a certified Unix
implementation and Linux is also modeled after Unix. Logically the most standard is
the Unix standard, specified by the OpenGroup. This huge document governs almost
all interfaces the standard libraries provide. This is at least true on the Solaris side,
Linux has several extension. To enable the Unix interface, the C preprocessor macro
_XOPEN_SOURCE must be defined to the value 500. This selects the interface of the
fifth revision of the Unix standard. Adventurous people can already use the interface
of the sixth revision by setting the symbol _XOPEN_SOURCE to the value 600.

The Unix standard is in large parts based on the POSIX standards ISO 9945-1 and
9945-2 (aka IEEE 1003.1 and IEEE 1003.2) with their numerous extensions. This means
that Unix systems also implicitly implement POSIX.

Below POSIX, mainly because of history, further interfaces are available. These are for
BSD and SVID systems. Today none of these last interfaces should be used directly
since they are long obsolete. For programming one should either use the POSIX or
the Unix interface.

One last interface is specified and this is the GNU interface. It includes everything
Unix does and more. The extra interfaces not included in the Unix specification are
not portable and one should know exactly when and why to use them.

Interfaces Missing on Linux

The Linux system interface lacks at the time of this writing some interfaces which
are available on Solaris. These fall into two categories: non-standard interfaces and
standard interface.

Into the former category falls one entire special and popular library: Solaris’ non-
POSIX thread library. The file in question is libthread.so (libthread.a) and the
system header is <thread.h >.

The interface of this thread library can to some extent be mapped to functions in the
POSIX thread library (which Solaris also provides). But there are exceptions. The first
table provided here maps functions where there exists a corresponding interface in
the POSIX thread library of Linux.

Table 3-1. Solaris Thread vs. POSIX Thread Library

Solaris Thread Library Linux POSIX Thread Library

thr_create() pthread_create()

29

Chapter 3. System Interfaces

Solaris Thread Library
thr_exit()
thr_getprio()
thr_getspecific()
thr_join()
thr_keycreate()
thr_Kkill()
thr_self()
thr_setprio()
thr_setspecific()
thr_sigsetmask()
thr_yield()

mutex_destroy()
mutex_init()
mutex_lock()
mutex_trylock()

mutex_unlock()

cond_broadcast()
cond_destroy()
cond_init()
cond_signal()

cond_timedwait()

cond_wait()

Linux POSIX Thread Library
pthread_exit()
pthread_getschedparam()

pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_kill()
pthread_self()
pthread_setschedparam()
pthread_setspecific()
pthread_sigmask()
sched_yield()

pthread_mutex_destroy()
pthread_mutex_init()

pthread_mutex_lock()
pthread_mutex_trylock()

pthread_mutex_unlock()

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()

pthread_cond_wait()

No corresponding interfaces exist for the following functions:

thr_suspend()
The thr_suspend()

function is stops the thread specified by a parameter. This

is a big problem since the function cannot take into account mutex and other
synchronization objects the thread is currently allocating. But this can lead to
deadlocks since other, not stopped threads might depend on the synchronization

objects.

For this reason the suspend function was not added to the POSIX standard (and

it also gets removed from specifications such as the Java thread library).

thr_continue()

This interface is used to continue a stopped thread. Since thr_suspend()
jected it is unnecessary for the same reasons to define a thr_continue()

30

is re-
equiv-

Chapter 3. System Interfaces

alent.

thr_main()

This interface can be used to determine whether the current thread is the main
thread or not. There is no equivalent in the POSIX thread library and also not in
Linux’s implementation.

thr_min_stack()
There is no corresponding interface in the Linux threads implementation. But
the Unix standard requires a symbol PTHREAD_STACK_MIN to be defined.
thr_getconcurrency()
thr_setconcurrency()

These interfaces are only necessary for m-on-n implementation (m user level
threads on top of n kernel threads, m >= n). Since the Linux thread library is
currently not designed in this way, this interface serves no purpose.

The situation with the semaphore interfaces is similarly. Sun has its own special im-
plementation which in parts can be mapped to the POSIX interfaces. Just as for the
thread stuff, Sun provides besides the own interface a POSIX semaphore interface.

One major difference between the Solaris and the Linux interface is that Solaris de-
fines these functions in librt ~ while on Linux they are in libpthread

Table 3-2. Solaris Semaphore vs. POSIX semaphore Library

Solaris Semaphore Library Linux POSIX Semaphore Library
sema_destroy() sem_destroy()

sema_init() sem_init()

sema_post() sem_post()

sema_trywait() sem_trywait()

sema_wait() sem_wait()

Further differences in the interfaces of the thread library result from missing func-
tionality. This will be covered in the next section.

One other big area where there is, to some extent, no equivalent functionality is
STREAMS and TLI (transport layer interface). The STREAMS network interfaces are
not available by default on Linux systems. However, the C library provides the inter-
face but they will always fail unless the kernel extension implementing STREAMS is
available.

If the program to be ported uses STREAMS, probably the best solution is to rewrite
the networking part to use the basic POSIX socket interface. This does not only make
the program use a POSIX interface, it also will improve the portability. Besides, Sun
is moving in this direction as well and is keeping STREAMS only for compatibility.

If rewriting is not an option or if a short-term solution is needed, information about
the Linux STREAMS implementation can be found at the Linux STREAMS! site.

The TLI implementation which is part of the Linux STREAMS implementation may
or may not be compatible with the SysV specification. Red Hat has no experience

31

Chapter 3. System Interfaces

whatsoever with this code and we are not advising to use it.

Differing Interfaces Between Solaris and Linux

Some of the interfaces available on Solaris and Linux differ despite having same
name and same purpose. This can happen for three reasons:

« limitations of the implementation (mainly on the Linux side)
« different interpretation of the standard
+ extension on top of a standard implementation

In the remainder of this section we will outline a few of the functions falling into this
category. This list will most probably be incomplete. In most cases if a Linux imple-
mentation differs from a Solaris implementation, the differences were unintentional
and will be removed when reported. Therefore if you have found a difference, it was
probably not previously known. We will concentrate here mainly of those differences
where functionality is missing because the underlying system does not support the
operation.

Limited Implementations

32

No Process-Shared Synchronization Objects

The functionality which will probably be missed most when coming from Solaris are
sharable synchronization objects. This means mutexes, semaphores, and conditional
variables which can be shared between different processes (not threads, this of course
works).

Calls to pthread_mutexattr_setpshared , pthread_rwlockattr_setpshared ,
and pthread_condattr_setpshared will fail if the second parameter is set to
PTHREAD_PROCESS_SHARED. This functionality is not implemented in the
thread library because the kernel implementation is lacking some features. Once this
kernel limitation is lifted the functionality is available. Therefore it is not a good idea
to completely disable all uses of these functions for Linux. Instead a check of the
return value at runtime should be used to determine whether the functionality is
available or not.

This same problem exists for standard interfaces which are not yet supported by
Solaris (like pthread_barrierattr_setpshared()).

The only exception is the implementation of the spinlocks. The second parameter of
pthread_spin_init can be set to PTHREAD_PROCESS_SHARED and the function
will not fail.

Signal in Threaded Application

The Linux POSIX thread implementation is using individual processes for each
thread. These are not completely separated processes but instead since they have to
shared things like virtual memory, file descriptors and the like.

Chapter 3. System Interfaces

However, the kernel does not really know the difference between threads and pro-
cesses. Therefore it does not handle the delivery signals correctly. There is no single
process ID (each thread has its own which is another difference from the POSIX stan-
dard) and the kernel is delivering the signal to that thread.

There is currently no easy way out of this. Programs which depend on signal delivery
will still work but all the signals are received by exactly the thread with the process
ID that was used.

This is the status at the time of this writing. It might be that this problem is already
worked around since it is a quite high-priority problem and will be worked on when
possible.

Linux Development Environment Namespace Issues

Great care has been taken to ensure the namespace of the development environment
is clean and compliant with the individual standards. This means that only the func-
tions specified by the standards are made available when the appropriate feature-
select macro for the standard is selected, and extended interfaces are only enabled
when explicitly requested.

The available and useful feature select macros are those in the following table.
They have to be defined (as C preprocessor macros) before including the first
system header. The best way to do this is to add, e.g., -D_GNU_SOURCE to the
commandline of the compiler.

_ISOC99_SOURCE
This macro selects makes all the functionality of the ISO C99 standard available.

Note: The GNU C library includes all ISO C99 functionality. This introduces two
kinds of problems: a) traditionally used interfaces might be reused (example: the nan
function, there was a nan symbol on some implementation denoting the NaN value);
b) silent changes in the implementation. The latter is especially bad but unavoidable.
One often hit problem is the change in strtod et.al to allow the hexadecimal floating-
point number notation which suddenly lets strtod accept expressions it would not
have before.

_POSIX_SOURCE
Signals that POSIX.1 functions should be used. This is not very useful and
_POSIX_C_SOURCEhould be used instead.

_POSIX_C_SOURCE

This macro should be set to a value representing the date of the revision of the
POSIX version one wants to use. Currently the last officially supported ver-
sion is identified by the value 199506L. To select this revision one should add
-D_POSIX_C_SOURCE=199506Lto the command line.

33

Chapter 3. System Interfaces

34

There are more revisions of the standard coming along and it will become neces-
sary to set the macro to higher values. But the work of the standards committee
is not yet finished. See the description of _XOPEN_SOURC®r more information.

_XOPEN_SOURCE

This macro can be used to select between the interfaces of the various revisions
of the X/Open Portability Guides (XPG) and the Single Unix Specification. The
GNU C library implements only the XPG4 and Single Unix Specification inter-
faces.

Normally everybody wants to set this macro to the value 500 which selects the
Single Unix interface. But it is also possible to set this macro to 600. This will
select the interfaces for the next revision of this specification. This is especially
interesting since the next revision of this specification will be unified with the
POSIX standard. I.e., the value 600 will select also all the new POSIX interfaces.
Some of these new interfaces are critical for high-performance applications and
therefore this option is useful even though the specification is not yet finished.

_LARGEFILE_SOURCE64
_FILE_OFFSET _BITS=m

These macros enable the interfaces agreed on by all Unix vendors at the Large
File Summit. They exist to enable 32-bit systems, which traditionally use types
which limit them to files of sizes up to 2GB, to support large files. There are two
modes in which this can happen.

The first mode it to define LARGEFILE_SOURCE64vhich makes an additional set
of functions and data types available. The new data types are ino64_t, off64_t,
blkent64_t, fsblkent64_t, fsfilent64_t, and all composed types which contain at
least one element with of the basic forms of the former types (e.g., struct stat
contains an element of type off_t and therefore exists a type struct stat64).

The naming of the functions to use with these types follows the same scheme.
There exists a Iseek64() function which takes and returned off64_t values.
There also is a open64 functions which opens a file ready for these large file
operations.

The second mode does not require cleanly written applications to be rewrit-
ten. Define -D_FILE_OFFSET_BITS=64 on the compiler command line enables
a mode in which the *64() functions and appropriate types completely replace
the old interfaces. L.e., off t is suddenly a 64-bit type and Iseek() takes and
returns such a value.

For more information about this extension, read the Large File Summit docu-
ment which is available, for instance, as part of the Single Unix Specification.

_GNU_SOURCE

If this macro is defined, all of the previously mentioned interface plus
several GNU-specific are made available. This provides the most convenient
programming environment but programs are becoming less portable. Therefore

Chapter 3. System Interfaces

care should be taken when writing applications which are expected to run on
other systems as well.

To ensure programs are not accidentally using interfaces which they should not use,
it is important to select the appropriate feature select macro and then use the -Wall
option to catch all occurrences of functions without prototypes. All such cases (unless
they are error in the user code) point to possible problems since a symbol or function
outside the selected interface is used.

At link time the GNU C library already tries to make sure that internal interfaces
cannot be used. This is done by not exporting these interfaces and therefore not pro-
viding the linker to bind the application to these symbols. There are two problems:

1. Not all interfaces can be hidden. Some interfaces are needed by other shared
objects implementing the system libraries (such as the thread library). This does
not mean that these interfaces can be used. Since all system libraries are released
in synch this means that the internal, but exported, interfaces can change since
the necessary changes can be performed in all system libraries.

The general rule is that user programs must not use any of the interfaces whose
name is in the system namespace. This means, all symbols with a leading un-
derscore character must be used. There are only a very few exceptions:

_tolower()
_toupper()

Traditional Unix interface that, on older systems, is faster than tolower()
and toupper() resp. There is no reason to use this interface on modern
systems.

_exit()
_Exit()

The variation of the exit() interface is needed in some special situations.
The second form is the one chosen for the same functionality by the ISO
committee.

_setjmp()
_longjmp()

These are the old 4.3BSD compatible names for the modern sigsetjmp()
and siglongjmp() interfaces where the second parameter is nonzero.

No other symbol starting with an underscore character should be used directly
by the application.

2. Linking statically will not show the same behavior since the symbol export re-
strictions only work with shared objects. Every single symbol of the libc is
available when linking statically. This is not a problem since all dependencies
are added to the application (and therefore changes in the libc implementation
are not effecting the application) but one of course has all the disadvantages of
static linking.

35

Chapter 3. System Interfaces

Notes
1. http://www.gcom.com/LiS/

36

	Table of Contents
	Chapter 1. Introduction
	About this Guide

	Chapter 2. Development Tools
	Language Support
	An Alternative Way
	C Compiler Features
	Invoking the Compiler
	Language Extensions
	Linker Invocation

	Chapter 3. System Interfaces
	Interfaces Missing on Linux
	Differing Interfaces Between Solaris and Linux
	Limited Implementations
	No ProcessShared Synchronization Objects
	Signal in Threaded Application

	Linux Development Environment Namespace Issues

