

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

Dustin L. Black, RHCA Sr. Technical Account Manager, Red Hat 2012-10-03

#whoami

- Systems and Infrastructure Geek
- Decade+ of Linux, UNIX, networking
- <notacoder/>
- Believe in Open Source Everything
- Sr. Technical Account Manager, Red Hat GSS

dustin@redhat.com

#whatis TAM

- Premium named-resource support
- Proactive and early access
- Regular calls and on-site engagements
- Customer advocate within Red Hat and upstream
- Multi-vendor support coordinator
- High-touch access to engineering
- Influence for software enhancements
- **NOT** Hands-on or consulting

Agenda

- Technology Overview
- Scaling Up and Out
- A Peek at GlusterFS Logic
- Redundancy and Fault Tolerance
- Data Access
- General Administration
- Use Cases
- Common Pitfalls

Technology Overview

Demystifying Gluster

What is GlusterFS?

- POSIX-Like Distributed File System
- No Metadata Server
- Network Attached Storage (NAS)
- Heterogeneous Commodity Hardware
- Aggregated Storage and Memory
- Standards-Based Clients, Applications, Networks
- Flexible and Agile Scaling
 - Capacity Petabytes and beyond
 - Performance Thousands of Clients
- Single Global Namespace

What is Red Hat Storage?

- Enterprise Implementation of GlusterFS
- Software Appliance
- Bare Metal Installation
- Built on RHEL + XFS
- Subscription Model
- Storage Software Appliance
 - Datacenter and Private Cloud Deployments
- Virtual Storage Appliance
 - Amazon Web Services Public Cloud Deployments

RHS vs. Traditional Solutions

- A basic NAS has limited scalability and redundancy
- Other distributed filesystems limited by metadata
- SAN is costly & complicated but high performance & scalable
- RHS
 - Linear Scaling
 - Minimal Overhead
 - High Redundancy
 - Simple and Inexpensive Deployment

Technology Stack

Demystifying Gluster

Terminology

- Brick
 - A filesystem mountpoint
 - A unit of storage used as a GlusterFS building block
- Translator
 - Logic between the bits and the Global Namespace
 - Layered to provide GlusterFS functionality
- Volume
 - Bricks combined and passed through translators
- Node / Peer
 - Server running the gluster daemon and sharing volumes

Foundation Components

- Private Cloud (Datacenter)
 - Common Commodity x86_64 Servers
 - RHS: Hardware Compatibility List (HCL)
- Public Cloud
 - Amazon Web Services (AWS)
 - EC2 + EBS

Disk, LVM, and Filesystems

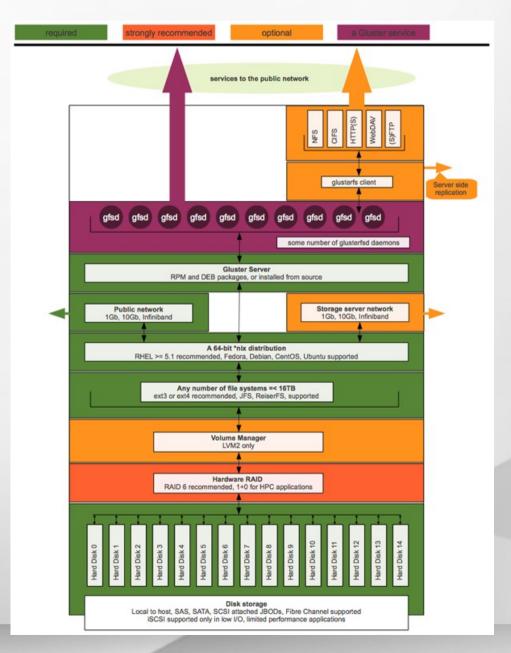
- Direct-Attached Storage (DAS)
- Just a Bunch Of Disks (JBOD)
- Hardware RAID
 - RHS: RAID 6 required
- Logical Volume Management (LVM)
- XFS, EXT3/4, BTRFS
 - Extended attributes support required
 - RHS: XFS required

Gluster Components

- glusterd
 - Elastic volume management daemon
 - Runs on all export servers
 - Interfaced through gluster CLI
- glusterfsd
 - GlusterFS brick daemon
 - One process for each brick
 - Managed by glusterd

Gluster Components

- glusterfs
 - NFS server daemon
 - FUSE client daemon
- mount.glusterfs
 - FUSE native mount tool
- gluster
 - Gluster Console Manager (CLI)



Data Access Overview

- GlusterFS Native Client
 - Filesystem in Userspace (FUSE)
- NFS
 - Built-in Service
- SMB/CIFS
 - Samba server required
- Unified File and Object (UFO)
 - Simultaneous object-based access

Putting it All Together

Scaling

Demystifying Gluster

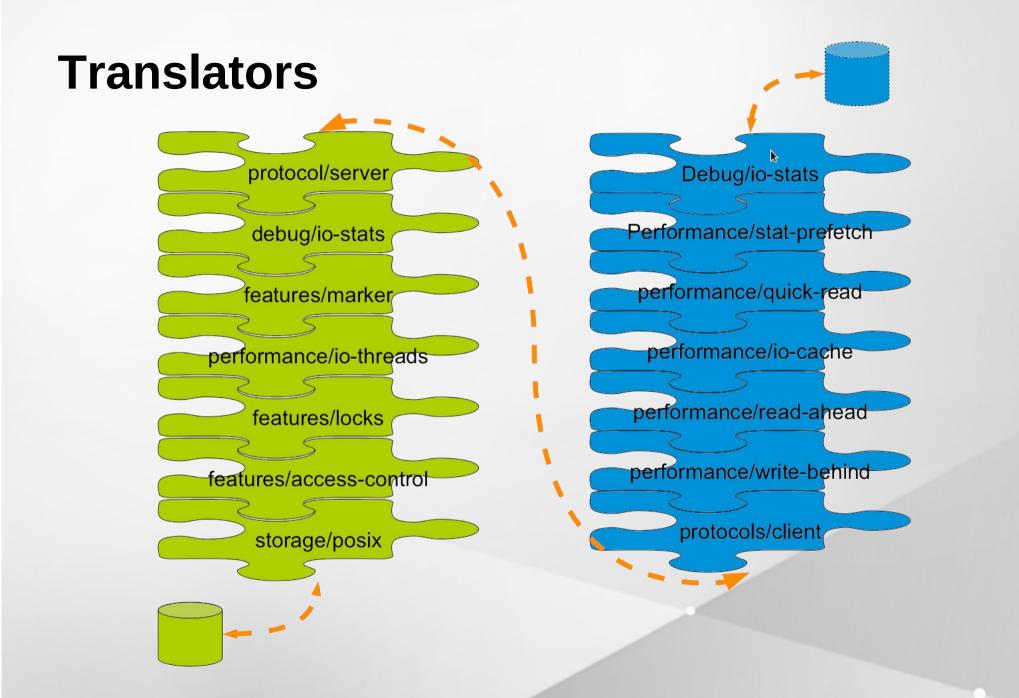
Scaling Up

- Add disks and filesystems to a node
- Expand a GlusterFS volume by adding bricks

Scaling Out

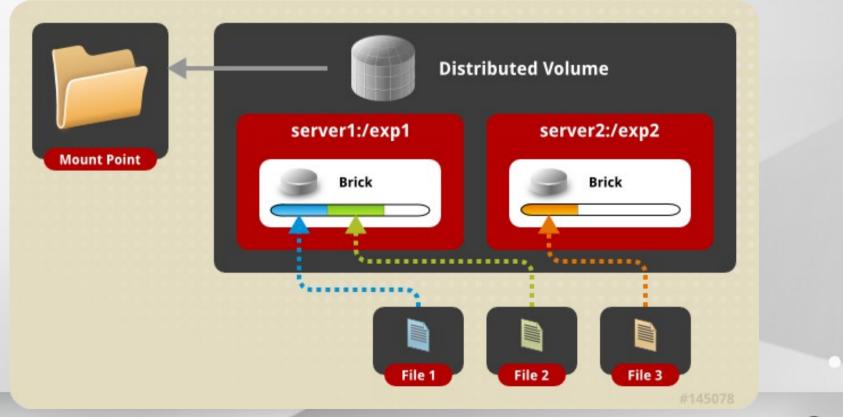
- Add GlusterFS nodes to trusted pool
- Add filesystems as new bricks

Under the Hood


Demystifying Gluster

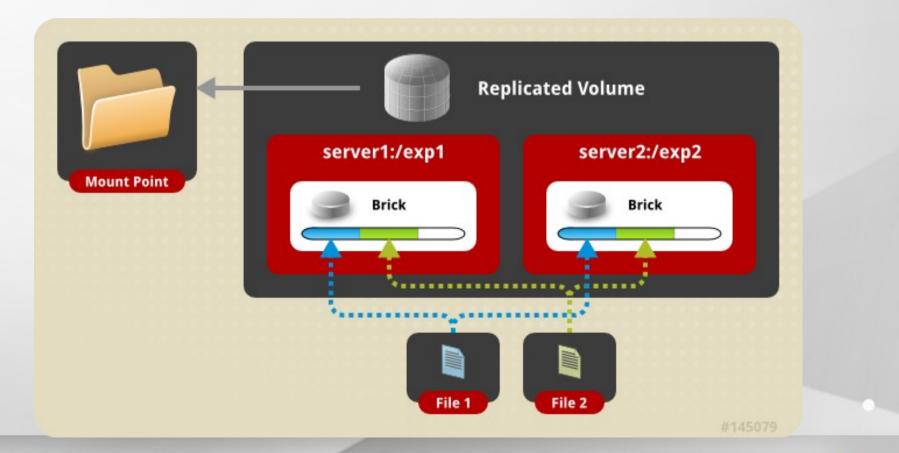
Elastic Hash Algorithm

- No central metadata
 - No Performance Bottleneck
 - Eliminates risk scenarios
- Location hashed intelligently on path and filename
 - Unique identifiers, similar to md5sum
- The "Elastic" Part
 - Files assigned to virtual volumes
 - Virtual volumes assigned to multiple bricks
 - Volumes easily reassigned on the fly

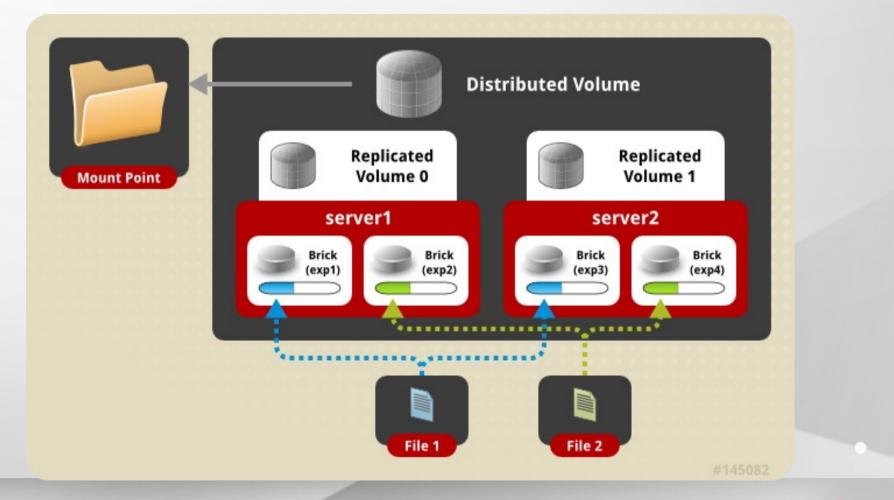

Distribution and Replication

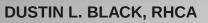
Demystifying Gluster

Distributed Volume

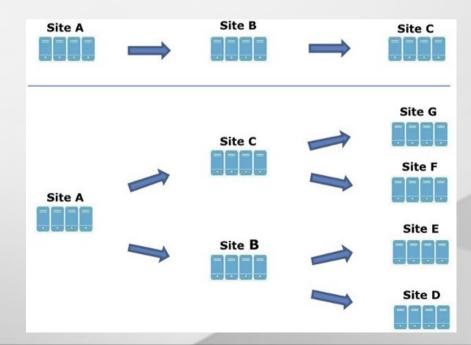

- Files "evenly" spread across bricks
- File-level RAID 0
- Server/Disk failure could be catastrophic

Replicated Volume


- Copies files to multiple bricks
- File-level RAID 1



Distributed Replicated Volume

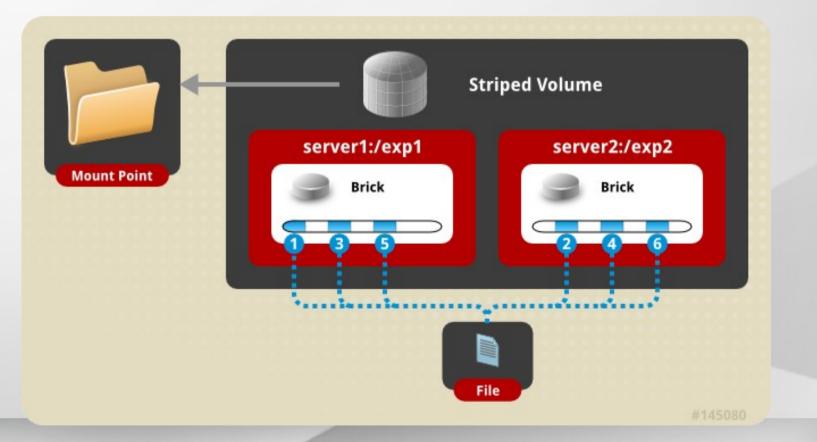

- Distributes files across replicated bricks
- RAID 1 plus improved read performance

Geo Replication

- Asynchronous across LAN, WAN, or Internet
- Master-Slave model -- Cascading possible
- Continuous and incremental
- Time should be synchronized on all master nodes

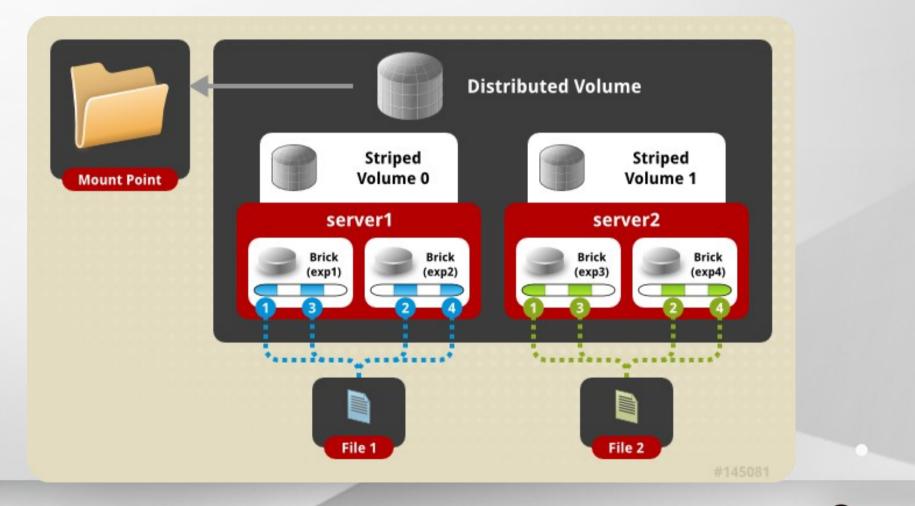
Replicated Volumes vs Geo-replication

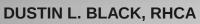
Replicated Volumes	Geo-replication
Mirrors data across clusters	Mirrors data across geographically distributed clusters
Provides high-availability	Ensures backing up of data for disaster recovery
Synchronous replication (each and every file operation is sent across all the bricks)	Asynchronous replication (checks for the changes in files periodically and syncs them on detecting differences)


Layered Functionality

Demystifying Gluster

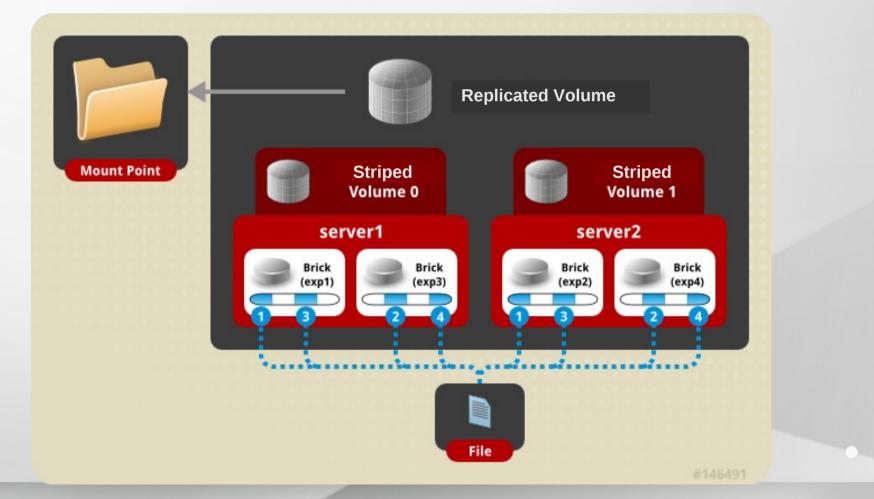
Striped Volumes


- Individual files split among bricks
- Similar to RAID 0
- Limited Use Cases HPC Pre/Post Processing



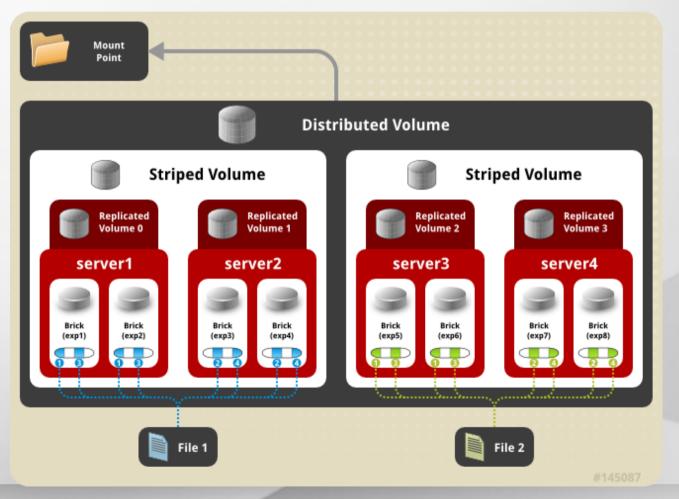
Distributed Striped Volume

- Files striped across two or more nodes
- Striping plus scalability



redhat.

Striped Replicated Volume


- RHS 2.0 / GlusterFS 3.3+
- Similar to RAID 10 (1+0)

Distributed Striped Replicated Volume

- RHS 2.0 / GlusterFS 3.3+
- Limited Use Cases Map Reduce

Data Access

Demystifying Gluster

GlusterFS Native Client (FUSE)

- FUSE kernel module allows the filesystem to be built and operated entirely in userspace
- Specify mount to any GlusterFS node
- Native Client fetches volfile from mount server, then communicates directly with all nodes to access data
- Recommended for high concurrency and high write performance

NFS

- Standard NFS v3 clients
 - Mount with vers=3 option
- Standard automounter is supported
- Mount to any node, or use a load balancer
- GlusterFS NFS server includes Network Lock Manager (NLM) to synchronize locks across clients
- Better performance for reading many small files

SMB/CIFS

- GlusterFS volume is first redundantly mounted with the Native Client on localhost
- Native mount point is then shared via Samba
- Must be setup on each node you wish to connect to via CIFS

General Administration

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

Preparing a Brick

lvcreate -L 100G -n lv_brick1 vg_server1
mkfs -t xfs -i size=512 /dev/vg_server1/lv_brick1
mkdir /brick1
mount /dev/vg_server1/lv_brick1 /brick1
echo '/dev/vg_server1/lv_brick1 /brick1 xfs defaults 1 2' >> /etc/fstab

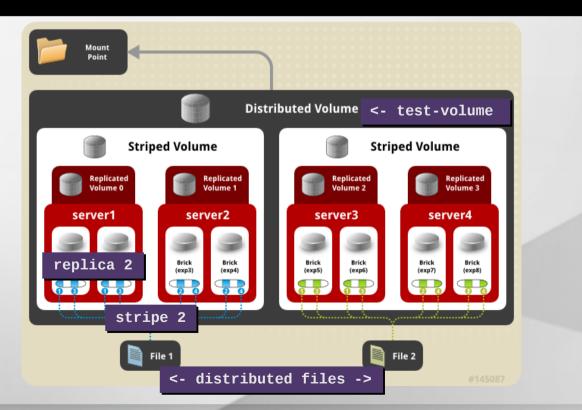
Adding Nodes (peers) and Volumes

gluster> peer probe server3 gluster> peer status Number of Peers: 2

Hostname: server2 Uuid: 5e987bda-16dd-43c2-835b-08b7d55e94e5 State: Peer in Cluster (Connected)

Hostname: server3 Uuid: 1e0ca3aa-9ef7-4f66-8f15-cbc348f29ff7 State: Peer in Cluster (Connected)

Distributed Volume


```
gluster> volume create my-dist-vol server2:/brick2 server3:/brick3
gluster> volume info my-dist-vol
Volume Name: my-dist-vol
Type: Distribute
Status: Created
Number of Bricks: 2
Transport-type: tcp
Bricks:
Brick1: server2:/brick2
Brick2: server3:/brick3
gluster> volume start my-dist-vol
```


Distributed Striped Replicated Volume

gluster> volume create test-volume replica 2 stripe 2 transport tcp \
server1:/exp1 server1:/exp2 server2:/exp3 server2:/exp4 \
server3:/exp5 server3:/exp6 server4:/exp7 server4:/exp8
Multiple bricks of a replicate volume are present on the same server. This setup is not
optimal.
Do you still want to continue creating the volume? (y/n) y

Creation of volume test-volume has been successful. Please start the volume to access data.

Distributed Striped Replicated Volume

gluster> volume create test-volume stripe 2 replica 2 transport tcp \
server1:/exp1 server2:/exp3 server1:/exp2 server2:/exp4 \
server3:/exp5 server4:/exp7 server3:/exp6 server4:/exp8
Creation of volume test-volume has been successful. Please start the volume to access
data.

gluster> volume info test-volume

```
Volume Name: test-volume
Type: Distributed-Striped-Replicate
Volume ID: 8f8b8b59-d1a1-42fe-ae05-abe2537d0e2d
Status: Created
Number of Bricks: 2 x 2 x 2 = 8
Transport-type: tcp
Bricks:
Brick1: server1:/exp1
Brick2: server2:/exp3
Brick3: server1:/exp2
Brick4: server2:/exp4
Brick5: server3:/exp5
Brick6: server4:/exp7
Brick7: server3:/exp8
```


Manipulating Bricks in a Volume

gluster> volume add-brick my-dist-vol server4:/brick4

gluster> volum	ne rebalance my-di	st-vol fix-layo	out start		
gluster> volum	ne rebalance my-di ne rebalance my-di Rebalanced-files		scanned	failures	status
localhost 10.16.156.72	112 140	15674 3423	170 321	0 2	completed completed

gluster> volume remove-brick my-dist-vol server2:/brick2 start gluster> volume remove-brick my-dist-vol server2:/brick2 status							
Node	Rebalanced-files	size	scanned	failures	status		
localhost	16	16777216	52	0	in progress		
192.168.1.1	13	16723211	47	0	in progress		
gluster> volume remove-brick my-dist-vol server2:/brick2 commit							

Migrating Data / Replacing Bricks

gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 start
gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 status
Current File = /usr/src/linux-headers-2.6.31-14/block/Makefile
Number of files migrated = 10567
Migration complete
gluster> volume replace-brick my-dist-vol server3:/brick3 server5:/brick5 commit

Volume Options

Auth

gluster> volume set my-dist-vol auth.allow 192.168.1.*
gluster> volume set my-dist-vol auth.reject 10.*

NFS

gluster> volume set my-dist-vol nfs.volume-access read-only
gluster> volume set my-dist-vol nfs.disable on

Other advanced options

gluster> volume set my-dist-vol features.read-only on gluster> volume set my-dist-vol performance.cache-size 67108864

Volume Top Command

gluster> volume top my-dist-vol read brick server3:/brick3 list-cnt 3 Brick: server:/export/dir1 =========Read file stats========				
read call count	filename			
116	/clients/client0/~dmtmp/SEED/LARGE.FIL			
64	/clients/client0/~dmtmp/SEED/MEDIUM.FIL			
54	/clients/client2/~dmtmp/SEED/LARGE.FIL			

- Many top commands are available for analysis of files, directories, and bricks
- Read and write performance test commands available
 - Perform active dd tests and measure throughput

Volume Profiling

gluster> volume profile my-dist-vol start
gluster> volume profile my-dist-vol info
Brick: Test:/export/2
Cumulative Stats:

Block Size:		1b+	3	2b+	64b+	
	Read:			0	0	
V	Vrite:	908		28	8	
•••						
%-latend	cy Avg-	Min-	Max-	calls	Fop	
	latency	Latency	Latency			
4.82	1132.28	21.00	800970.00	4575	WRITE	
5.70	156.47	9.00	665085.00	39163	READDIRP	
11.35	315.02	9.00	1433947.00	38698	LOOKUP	
11.88	1729.34	21.00	2569638.00	7382	FXATTROP	
47.35	104235.02	2485.00	7789367.00	488	FSYNC	
Duration	ı : 33	5				
BytesRead : 94505058						
BytesWritten : 195571980						

Geo-Replication

Remote GlusterFS Volume

gluster> volume geo-replication my-dist-vol slavehost1:my-dist-repl start
Starting geo-replication session between my-dist-vol & slavehost1:my-dist-repl has been
successful
gluster> volume geo-replication my-dist-vol status
MASTER SLAVE STATUS
my-dist-vol gluster://slavehost1:my-dist-repl OK

Remote SSH

ssh-keygen -f /var/lib/glusterd/geo-replication/secret.pem
ssh-copy-id -i /var/lib/glusterd/geo-replication/secret.pem repluser@slavehost1
gluster> volume geo-replication my-dist-vol repluser@slavehost1:/repl_dir start
Starting geo-replication session between my-dist-vol & slavehost1:/repl_dir has been
successful
gluster> volume geo-replication my-dist-vol status
MASTER SLAVE STATUS
my-dist-vol ssh://repluser@slavehost1:/repl_dir OK

gluster> volume info my-dist-vol ... Options Reconfigured: geo-replication.indexing: on

Use Cases

Demystifying Gluster

GlusterFS and RHS for the SysAdmin

Common Solutions

- Media / Content Distribution Network (CDN)
- Backup / Archive / Disaster Recovery (DR)
- Large Scale File Server
- Home directories
- High Performance Computing (HPC)
- Infrastructure as a Service (IaaS) storage layer

Hadoop – Map Reduce

- Access data within and outside of Hadoop
- No HDFS name node single point of failure / bottleneck
- Seamless replacement for HDFS
- Scales with the massive growth of big data

CIC Electronic Signature Solutions Hybrid Cloud: Electronic Signature Solutions

.

 Reduced time-tomarket for new products

- Meeting all client SLAs
- Accelerating move to the cloud

Challenge

- Must leverage economics of the cloud
- Storage performance in the cloud too slow
- Need to meet demanding client SLA's
- Solution
 - Red Hat Storage Software Appliance
 - Amazon EC2 and Elastic Block Storage (EBS)
- Benefits
 - Faster development and delivery of new products
 - SLA's met with headroom to spare
 - Accelerated cloud migration
 - Scale-out for rapid and simple expansion
 - Data is highly available for 24/7 client access

Pandora Internet Radio Private Cloud: Media Serving

- 1.2 PB of audio served per week
- 13 million files
- Over 50 GB/sec peak traffic

Challenge

- Explosive user & title growth
- As many as 12 file formats for each song
- 'Hot' content and long tail
- Solution
 - Three data centers, each with a six-node GlusterFS cluster
 - Replication for high availability
 - 250+ TB total capacity
- Benefits
 - Easily scale capacity
 - Centralized management; one administrator to manage day-to-day operations
 - No changes to application
 - Higher reliability

Brightcove Private Cloud: Media Serving

- Over 1 PB currently in Gluster
- Separate 4 PB project in the works

Challenge

- Explosive customer & title growth
- Massive video in multiple locations
- Costs rising, esp. with HD formats

Solution

- Complete scale-out based on commodity DAS/JBOD and GlusterFS
- Replication for high availability
- 1PB total capacity
- Benefits
 - Easily scale capacity
 - Centralized management; one administrator to manage day-to-day operations
 - Higher reliability
 - Path to multi-site


Pattern Energy High Performance Computing for Weather Prediction

- Rapid and advance weather predictions
- Maximizing energy assets
- Cost savings and avoidance

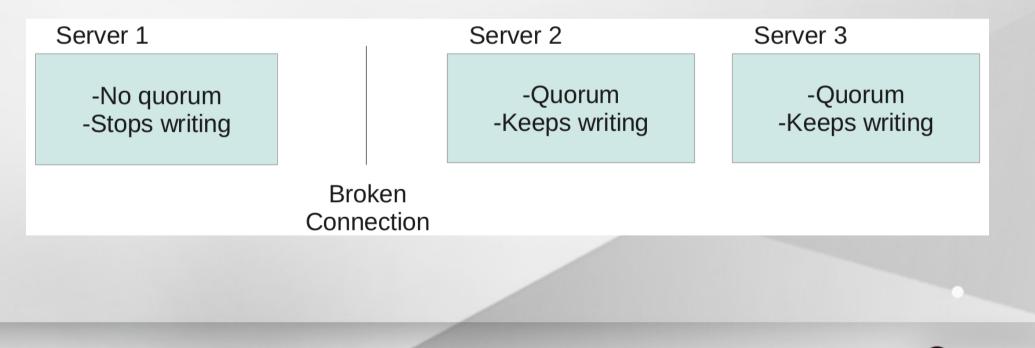
Challenge

- Need to deliver rapid advance weather predictions
- Identify wind and solar abundance in advance
- More effectively perform preventative maintenance and repair
- Solution
 - 32 HP compute nodes
 - Red Hat SSA for high throughput and availability
 - 20TB+ total capacity
- Benefits
 - Predicts solar and wind patterns 3 to 5 days in advance
 - Maximize energy production and repair times
 - Avoid costs of outsourcing weather predictions
 - Solution has paid for itself many times over

Common Pitfalls

Demystifying Gluster

GlusterFS and RHS for the SysAdmin


Split-Brain Syndrome

- Communication lost between replicated peers
- Clients write separately to multiple copies of a file
- No automatic fix
 - May be subjective which copy is right ALL may be!
 - Admin determines the "bad" copy and removes it
 - Self-heal will correct the volume
 - Trigger a recursive stat to initiate
 - Proactive self-healing in RHS 2.0 / GlusterFS 3.3

Quorum Enforcement

- Disallows writes (EROFS) on non-quorum peers
- Significantly reduces files affected by split-brain
- Preferred when data integrity is the priority
- Not preferred when application integrity is the priority

redhat.

Do it!

Demystifying Gluster GlusterFS and RHS for the SysAdmin

Do it!

- Build a test environment in VMs in just minutes!
- Get the bits:
 - Fedora 17 has GlusterFS packages natively (3.2)
 - RHS appliance eval. ISO available on RHN (3.3)
 - Go upstream: www.gluster.org (3.3)

Thank You!

- dustin@redhat.com
- storage-sales@redhat.com
- RHS:
 - www.redhat.com/storage/
- GlusterFS:
 - www.gluster.org
- TAM:

access.redhat.com/support/offerings/tam/

Demystifying Gluster GlusterFS and RHS for the SysAdmin