
New quorum features in Corosync 2

0.1 Initial version Christine Caulfield April 2012
0.2 Added appendix of libcman replacements Christine Caulfield February 2013
0.3 Added mention of new quorum options Christine Caulfield June 2014

and some formatting changes
0.4 Clarify fence delay Christine Caulfield May 2015
0.5 Update some ATB detail Christine Caulfield July 2015
0.6 Fix wait_for_all_status doc Christine Caulfield January 2016

Introduction

This document describes the new quorum system in corosync for Corosync 2. It updates a lot of the
content of my previous document “Whither cman” which should now be considered obsolete. I will
assume a good knowledge of cman and openais/corosync from RHEL-5 and RHEL-6 – this is not
an introduction to clustering. If you want one of those then may I gently recommend the
documentation provided by proper authors who can actually write documentation. The purpose of
this little document is to highlight the differences and help describe the new features that are
available. It is aimed at support staff and people who want a more technical overview of the
systems.

With the release of corosync 2.0.0 “Needle”, quorum majority voting is an integral part of the
daemon, and not an add-in as cman was in previous versions. This has many implications for how it
is configured but also introduces many new features that should help people manage their cluster
nodes.

The new module is called votequorum and is not loaded by default into corosync. Without it (or any
quorum module) corosync will consider the cluster always quorate by default.

I'll go through the changes at a high level first so you get a feel for what has been done, then I'll
delve down into some more detail and show you how the new features can help make a cluster more
highly available and, hopefully, easier to manage than before.

votequorum has a manpage votequorum(5) which contains extra detail and also some examples that
are not shown here and I recommend you consult it. But I hope this is easier reading to get you
started.

Similarities

votequorum is substantially similar to cman in previous versions in many ways. At its most basic
level it is a quorum-based majority voting system where a cluster needs expected_votes/2+1 votes
for it to be quorate. This means there should be no nasty surprises, we hope, in upgraded clusters as
the basic concepts are retained. The cman two_node mode, which depends on a power fence race, is
also still supported for 2 node clusters, as is the quorum device interface for use by qdiskd. Though
qdiskd is not available for votequorum at the time of writing (June 2014) the hope is that the
additional options will make it unneeded. Read on for more detail...

Config file changes

The most obvious change with this new system is that we have totally changed the configuration

file. Actually we haven't ... in a way. We are now using corosync.conf, which has been standard for
corosync in RHEL6 and (as openais.conf) in RHEL5 too but we didn't use it there as all the
information was in cluster.conf. But now all of the quorum and node information is also held in
corosync.conf. cluster.conf had been kept reasonably consistent since RHEL4 so we hope there
won't be too many complaints about it going away now.

Unlike cluster.conf it is not mandatory to list all of the cluster nodes in corosync.conf. It might be
helpful for you to do so, for reasons I'll go into later, but we don't insist any more.

Command-line changes

With the demise of cman there is also the demise of cman's imaginatively command-line tool
“cman_tool”. There is now the equally imaginatively named corosync-quorumtool, that shows
similar (though a little more) information in a slight different format.

To be honest, most people seemed to prefer using clustat anyway, as that showed rgmanager
services too, so we're not expecting a huge public uprising about this. Though, having said that
rgmanger is now replaced by pacemaker so there are bigger things to worry about anyway.

New Quorum Features

Votequorum has some handy new features that make quorum handling a lot more flexible than
cman could ever manage, we hope these will mostly remove the need for that pesky qdisk and its
complicated timings and obscure heuristics options (what were they all about?!).

With these new options things might look even more complicated than before if you're not used to
them – and you're not, of course, or you wouldn't be reading this. But I hope that some explanations
will help make this seem clearer. And if not, I'm sorry. But it's also always good to experiment with
these things.

two_node

OK, this is not a new feature, it's been in cman since the start. But I mention it here out of
completeness really as it's still available, still pretty useful. two_node is, shockingly, designed for
clusters with only two nodes where you, not unreasonably, want one node to continue working if the
other fails. This mode requires that expected_votes is set to 2 and that you have hardware fencing
configured and connected over the same network interface as the cluster heartbeat. The way it
works is that in the event of a network outage both nodes race in an attempt to fence each other and
the first to succeed continues in the cluster. The system administrator can also associate a delay with
a fencing agent so that one node can be given priority in this situation so that it always wins the
race. This is the simplest setup for a twin-node cluster.

Enabling two_node also, by default, enables the following option wait_for_all...

wait_for_all

This is the first of the new options. When starting up a cluster from scratch (ie all nodes down or, at
least, not part of the cluster) it will prevent the cluster from becoming quorate until all of the nodes
have joined in. It does this by comparing the number of active votes in the cluster with the value of
expected_votes. It's important to realise that it does not use the nodes list for this even if it exists.

Without wait_for_all, the normal behaviour of a cluster is for quorum to be enabled as soon as the
required number of votes is achieved. wait_for_all is a useful way of booting up a cluster and
making sure that it is not partitioned at startup. In the two_node case this is very important. Though
you can disable wait_for_all in a two_node cluster, it is not recommended.

Note that once all of the nodes have been seen, normal quorum behaviour resumes. Nodes can join
and leave the cluster and the value of quorum will be honoured as normal. wait_for_all only affects
the initial startup of a cluster from no nodes active to all nodes active. In a cluster that is larger than
two nodes this might seem like a strange thing to enable. Bear with me, all will become clear, I
hope, in the next few sections.

auto_tie_breaker

Auto Tie Breaker allows the cluster to continue working in the event that a cluster containing an
even number of nodes is split in half. Under the old quorum system a cluster needed n/2+1 nodes to
continue working and a 50/50 split of nodes could result in a split-brain that is not recoverable
without manual intervention or, (hushed whisper) qdiskd. This is why reliable clusters are best made
with odd numbers. Sorry were made with odd numbers, no longer!

This new option tells votequorum that in the event of a 50/50 split of the cluster then the half with
the lowest node ID (by default) in it should be deemed the quorate half, and the other half not. If
fencing is in operation than the other half will be fenced. The point of this option is to avoid the
stand-off that can occur when there is a network outage that splits the cluster into two halves and is
the first of the “please sack qdiskd” options that are implemented in votequorum. auto_tie_breaker
can actually be told which node or list of nodes are used to determine the quorate half of the cluster
so you can make sure that an important or especially beefy node or nodes gets priority. See the man
page for the gory (and they are gory) details.

auto_tie_breaker is not compatible with two_node as both are systems for determining what
happens should there be an even split of nodes. If you have both enabled, then an error message will
be issued and two_node will be disabled.

If you have a cluster with an odd number of nodes and auto_tie_breaker enabled then it is
compulsory to also specify wait_for_all. The reasons for this are complex (aren't they always with
clusters) but, roughly, it ensures that if the larger 'half' (no, I am not a mathematician) is down –
caused by incremental outages, then it won't gain quorum over the currently active partition when
those nodes reboot.

allow_downscale

This new option is in some ways a tidier version of the “cman_tool leave remove” option from
olden days. “leave remove” was always a slightly clumsy option, often misunderstood and even
more often misused.

Under normal operation the expected_votes value can only ever increase or stay stable.
allow_downscale will let the value go downwards too, under very specific circumstances. 1) if the
node leaves the cluster tidily (most likely due to an ordered shutdown) and 2) that it does not go
below the value for expected_votes set in corosync.conf. Point 2 is important here. You cannot set

this option and reduce a seven node cluster down to 2 nodes using it, in that case expected_votes
will remain at its original value of 7 (unless it was overridden to something else manually).

The main purpose of this option is to allow nodes to be added temporarily to a cluster to cover extra
workload, they can be safely added as expected_votes will be increased by the normal mechanisms
and then decreased again as the extra nodes are removed down to the initial setting in
corosync.conf.

last_man_standing & last_man_standing_window

These two options are probably the most interest to those wanting to get rid of qdiskd and its
foibles. This is why I left it till last, cos I'm cruel like that.

last_man_standing is the, slightly sexist, name for a system that allows votequorum to reduce the
number of expected_votes automatically when nodes leave the cluster. It does this
last_man_standing_window milliseconds after the nodes leave the cluster. It's important to note that
the remaining cluster must be quorate for this calculation to happen. This allows a cluster to be
partitioned and the quorate side can be reduced and still stay active. It will also tolerate further node
losses as expected votes and quorum will be reduced as if this was the normal running of the cluster.

That sounds complicated and is best illustrated with an example. I make no apology for stealing this
8 node example from the man page votequorum.5

Here's snippet from corosync.conf:

 quorum {
 provider: corosync_votequorum
 expected_votes: 8
 wait_for_all: 1
 last_man_standing: 1
 last_man_standing_window: 10000
 }

 Example chain of events:
1. The cluster is fully operational with 8 nodes. (expected_votes: 8 quorum: 5)
2. 3 nodes die, cluster is quorate with 5 nodes.
3. After last_man_standing_window timer expires, expected_votes and quorum are

recalculated. (expected_votes: 5 quorum: 3)
4. At this point, 2 more nodes can die and cluster will still be quorate with 3.
5. Once again, after last_man_standing_window timer expires expected_votes and quorum are

recalculated. (expected_votes: 3 quorum: 2)
6. At this point, 1 more node can die and cluster will still be quorate with 2.
7. After one more last_man_standing_window timer (expected_votes: 2 quorum: 2)

It's important to note that the normal operation of last_man_standing only allows the cluster to go
down to 2 nodes (but last_two_men_standing just sounds weird). If you want to go down to running
with only 1 node then you also need to set auto_tie_breaker. Which you now are an expert in.

More On The Configuration File

As I mentioned above the configuration for a cluster is now held in /etc/corosync/corosync.conf and
you got a sneak preview of its contents above. All of the new features are enabled in the quorum{}
stanza as you can see, and setting the value to 1 enables that option. The default is 0 (disabled). You
must load votequorum before it can be used, otherwise corosync will assume that the cluster is
always quorate, regardless of what happens. This is not usually what you want if you come from a
normal HA background. So the lines

quorum {
 provider: corosync_votequorum
}

should be the very least configuration you can get away with. As in cluster.conf you can also
specify the nodes you expect to join the cluster, and their (optional) node IDs. These go in the
nodelist stanza like this:

nodelist {
 node {
 ring0_addr: 192.168.1.101
 nodeid: 1
 }
 node {
 ring0_addr: 192.168.1.102
 nodeid: 2
 }
 node {
 ring0_addr: 192.168.1.103
 nodeid: 3
 }
 node {
 ring0_addr: 192.168.1.104
 nodeid: 4
 }

The nodeids are optional for IPv4 but recommended if you want to keep your sanity reading the
output of corosync-quorumtool. If you don't then corosync will use the node IP address as the
nodeid and they don't look pretty when printed out as a pure number ... not even in hexadecimal.
For IPv6, nodeids are compulsory as before. If you are using udpu as the corosync transport you
will have to include a nodelist section – but the pcs tool will do this for you, so don't worry too
much about it.

When you specify all the nodes like this then, like cman before it, corosync will calculate
expected_votes by assuming all nodes have a single vote. I really don't recommend giving nodes
different votes, it only works well for very specialised cases that almost never apply. If you do want
to change the votes for a node from 1, then I'm going to make you look in the man page to find out
how to do it. So there :P

I've listed IP addresses in the nodelist above but you can use host names if you want. This is much
simplified since cman days – that system just got too messy and too confusing. So many times we
have had to refer people to the 4 steps that cman went through as it tried to turn a name into a
cluster node ID. So now they are just resolved at corosync startup (or config reload) time using
resolver calls. No funny stuff, no fancy parsing, just a call to getaddrinfo(3). We hope this makes
things easier, and keeps you off the phone (or email) to us. Note that the names are not stored in

corosync at all, so don't look too shocked if they look different to the command-line tools. See ...

corosync-quorumtool

corosync-quorumtool is the cman_tool for the new age ... ish. It allows you to query votequorum for
the list of nodes, their votes, quorum-status and all those good things that you have become used to.
It also allows you to look at the node IDs in hexadecimal, just in case you forgot to assign them in
corosync.conf and can't work out which system 827483261 is.

So, here are some examples of corosync-quorumtool to warm you up.

[root@amy ~]# corosync-quorumtool -l

Membership information

 Nodeid Votes Name
 1 1 amy.chrissie.net
 2 1 anna.chrissie.net
 3 1 clara.chrissie.net
 4 1 fanny.chrissie.net
1761716416 1 judith.chrissie.net
1778493632 1 kaija.chrissie.net
1795270848 1 nadia.chrissie.net
1812048064 1 sofia.chrissie.net

This is the equivalent of 'cman_tool nodes'. I've left four nodes without node IDs in corosync.conf
so you can see what sort of node IDs get generated for you. You will also notice that it has
displayed node names, despite them not being in my corosync.conf. corosync-quorumtool resolves
the names for you when it is run, they are not stored within corosync at all. So, if your DNS is a bit
odd or flighty, you might see different names here some times. The -i switch will force
corosync-quorumtool to display IP addresses instead.

[root@amy ~]# corosync-quorumtool -siH
Quorum information

Date: Mon Apr 23 13:22:33 2012
Quorum provider: corosync_votequorum
Nodes: 8
Ring ID: 12
Quorate: Yes

Votequorum information

Node ID: 1
Node state: Member
Node votes: 1
Expected votes: 8
Highest expected: 8
Total votes: 8
Quorum: 5
Flags: Quorate

Membership information

 Nodeid Votes Name
0x00000001 1 192.168.1.101

0x00000002 1 192.168.1.102
0x00000003 1 192.168.1.103
0x00000004 1 192.168.1.104
0x6901a8c0 1 192.168.1.105
0x6a01a8c0 1 192.168.1.106
0x6b01a8c0 1 192.168.1.107
0x6c01a8c0 1 192.168.1.108

This example is similar to cman_tool status but it shows the membership information too. I've
added the -i and -H switches here so you can see the effect they have on the output. The IP address
is shown rather than a node name (so it doesn't need to be resolved), and the node IDs are shown in
hexadecimal so that the assigned ones are a little less frightening. There are options to sort the
output by nodeid, nodename or IP address should you be fussy about these things ... I am, that's why
I added the option.

Runtime information

The very sharp-eyed among you will notice that corosync-quorumtool doesn't have the
comma-separated values option that cman_tool had. I'm not actually sure how many people used
this option but it was there, and now it's not. Sorry. There is a '-p' option that looks, from the usage
text, that it might do that. But it doesn't. Sorry. It's just a more consistent version of the normal
output. Sorry. You can sort the list by node name or node ID though. Yeah. Sorry.

If you want run-time information about corosync and votequorum then corosync-cmaptool is
actually the best place to look for getting program-readable output. It also shows a comprehensive
list of variables that quorumtool does not, so it can be very useful for finding out just what is
happening in your cluster node. If you ask us complicated questions about a corosync cluster we'll
almost certainly come back to you for this information if you don't provide it initially.

Along with all of the settings I've talked about above and, in fact, the whole of corosync.conf,
corosync-cmaptool also dumps out information in the runtime.xxxx area. I'll mention the specific
quorum-related ones here but if you're interested in the workings of your cluster node and don't
value your sanity too highly I can recommend browsing the full output.

runtime.votequorum.lowest_node_id
This is the lowest active nodeid known to votequorum. If you remember what I said about
auto_tie_breaker (and you'd better!) this is the node that will be used to determine the quorate
partition should the cluster get split in half and auto_tie_breaker_node: is set to lowest.

runtime.votequorum.highest_node_id
This is the highest active nodeid known to votequorum. It's similar to above but the, er, highest
node id instead of the lowest. Obvs.

runtime.votequorum.wait_for_all_status
If wait_for_all is active then this indicates whether all of the nodes have yet been seen. If 0 then all
of the nodes have been seen and quorum will behave normally. If 1, then there are nodes that have
not been seen (ie expected_votes has not been reached, remember?) and the cluster will not be
quorate until they have.

runtime.votequorum.two_node
Predictably this indicates that two_node mode is active. Normally this will reflect the contents of
quorum.two_node but it can be cleared if a quorum device is active when two_node is attempted to

be set. This value indicates the actual active value and always overrides what you might see in
quorum.two_node.
runtime.votequorum.ev_barrier
The expected votes barrier is the lowest that expected_votes is allowed to fall to without manual
intervention. It's used in the operation of allow_downscale.

runtime.votequorum.qdevice_can_operate
Indicates that the quorum device API can be used. Options such as two_node, last_man_standing,
auto_tie_breaker, wait_for_all, and allow_downscale are all incompatible with a quorum device and
will clear this flag. If this flag is 0 (it defaults to 1) then an attempt to register a quorum device will
fail.

runtime.votequorum.this_node_id
No prizes for guessing what this is, it is the local node ID! It's put here to save you trying to work it
out by reading the corosync.conf file and parsing the node IP addresses by hand. Aren't we lovely to
you?

runtime.votequorum.atb_type
This is a number that corosync uses internally to check the nodelist when auto_tie_breaker is in use.
If it is set to 0, ATB is disabled; 1, ATB uses the lowest nodeid; 2, ATB uses the highest nodeid; 3,
ATB consults the list of nodes in quorum.auto_tie_breaker_nodes. Although this is really for
internal use it might be handy for you to check that corosync did actually do what you asked it to.

Quorum device

I have touched on quorum device above but not mentioned it at all otherwise. With all of the above
new options it's hoped that most installations will no longer need qdiskd to get the functionality
they need from the cluster, and thus life should be a lot simpler. For those few poor souls that do
need to use qdiskd still, err ... it's not there yet! Sorry.

Well, Well, Well

So, that was a brisk overview of the new quorum system and I hope it's warmed you up. If you need
more information read the man pages or contact me (chrissie) or fabbione and we'll do our best to
help.

Appendix A. Migrating code from libcman

This appendix is just a list of libcman calls showing you where in corosync to find equivalents.
Most of them have very similar names so it shouldn't be too hard I hope.

cman_admin_init
cman_init
cman_finish
cman_setprivdata
cman_getprivdata
cman_start_notification
cman_stop_notification
cman_start_confchg
cman_stop_confchg

cman_get_fd
cman_dispatch

These are not really cman-specific, so just use the equivalent calls for the subsystem(s) you are
using.

cman_set_votes
cman_set_expected_votes
cman_set_dirty
cman_register_quorum_device
cman_unregister_quorum_device
cman_poll_quorum_device
cman_get_quorum_device
cman_get_node_count
cman_get_nodes
cman_get_node

Use libvotequorum. The equivalents should be self-evident I hope.

cman_is_quorate

Use libquorum, or libvotequorum. You should only use libvotequorum if you are also using other
features of that module. If all you need to know is the quorum status then you should use libquorum
as that will work regardless of quorum provider.

cman_get_version
cman_set_version
cman_get_cluster
cman_set_debuglog

Use libcmap to read/write to the cmap database

cman_kill_node
cman_shutdown
cman_replyto_shutdown
cman_get_node_addrs

Use libcfg

cman_leave_cluster

If you just need to leave the cluster then libcfg will work. Votequorum has no equivalent of the
LEAVE flag, you should configure your cluster for this behaviour in corosync.conf (allow
downscale) if you need it.

cman_send_data
cman_start_recv_data
cman_end_recv_data

Use libcpg

cman_get_node_extra

cman_get_subsys_count
cman_is_active
cman_is_listening
cman_barrier_register
cman_barrier_change
cman_barrier_wait
cman_barrier_delete
cman_get_extra_info
cman_get_fenceinfo
cman_node_fenced
cman_get_disallowed_nodes

These calls are not implemented at all, sorry. You're on your own. Most of these calls should not
have been used by non Red Hat application in the first place, they were there to support cman_tool
and system daemons. If you've been using cman_is_listening then the cpg API provides all the
necessary functionality.

