
Red Hat Cluster Suite Networking

Revision History

0.1 17th January 2008 Christine Caulfield Initial version
0.2 18th January 2008 Christine Caulfield Mention RHEL4 cluster IDs
0.3 22nd February 2008 Christine Caulfield Add a bit about bandwidth use
0.4 17nd March 2008 Christine Caulfield Mention wireshark decoders
0.5 31st March 2008 Christine Caulfield Add a bit about connection security
0.6 3rd April 2008 Christine Caulfield Small changes & typo fixes, add a bit on ccsd
0.7 9th June 2008 Christine Caulfield Mention version of wireshark for DLM
0.8 5th October 2010 Christine Caulfield Mention Broadcast
0.9 8th March 2013 Christine Caulfield Remove RHEL4, add mentions of rgmanager &

ricci

This document describes how cluster suite in RHEL4 and RHEL5 uses networking. It does not describe
in detail the internal protocols of the components, it is intended as an aid to understanding what sort of
packets are in use and why, and as a troubleshooting document.

It is assumed that the reader has a working knowledge of the basic cman toolset (principally cman_tool,
ccsd and the use of cluster.conf)

Contents:
1. Overview of protocols used

RHEL5 CMAN
RHEL6 corosync
CMAN common bits
DLM

2. Name resolution & cluster.conf
3. Other bits
4. Routing
5. Diagnostic tools
6. Bandwidth use
7. Connection security

1. Overview of protocols

There are several protocols in use by clustering. The most common is whatever is being used by
openais/corosync. This will usually be multicast UDP but could also be broadcast or unicast UDP
depending on the configuration. The DLM uses it's own TCP protocol that is independent of anything
else and also ccsd (in RHEL5 only) uses its own unicast AND multicast UDP. Ricci has its own XML-
based TCP protcol!

1.1 RHEL5 CMAN

cman in RHEL5 is layered on OpenAIS, in RHEL6 this is corosync, which is (for the intent of this
document) essentially the same thing. This uses multicast UDP packets by default but unicast UDP
(udpu) or broadcast can also be configured.

If no multicast address is configured in cluster.conf then one is generated using the cluster ID as the
bottom 16 bits and 239.192 (IPv4) or FF15:: (IPv6) as the top 16 bits .

The openais 'totem' protocol very complicated so I won't attempt to summarise it here. There are
academic papers that describe it in excruciating detail if that's what you need. Very simply, a rotating
token visits all the nodes in a 'ring', this system ensures that messages arrive at nodes in a predictable
order and provides useful features such that when a message arrives back at its originating node, that
node knows that all other nodes have seen it.

Openais uses three UDP sockets for communications. A multicast receive socket which is bound to the
multicast address. A multicast send socket which is bound to the local IP address but at the port number
specified minus one, and a token socket which is bound to the local IP address. The default port number
is 5405, so a normal system will have two sockets bound to port 5405 and one to 5404.

1.2 CMAN common bits

cman traffic is crucial to the liveness of the cluster. To ensure that it is not queued behind other bulk
networking traffic it sets the socket priority to TC_INTERACTIVE (6). There are various traffic
scheduling algorithms available in Linux to change the way the priorities are processed, but most will
prioritize TC_INTERACTIVE above other (eg http or even DLM) traffic.

If you choose your own multicast address, make sure you do it carefully. A lot of people seem to
choose things like 224.0.0.x which is “All hosts on the network” and might not be routed correctly, or
even at all, by some hardware. A better solution is to use the 239.192.x.x address series that cman uses.
Whichever you do choose, we strongly recommend that you double-check the configuration of any
routers that the packets must pass through. Some can take a long time to learn addresses, stalling or
breaking cluster formation.

I have, a couple of times, seen the statement 'cman works using a crossover cable, but behaves oddly on
my routed network' ... check your router if this happens and/or adjust the TTL. This can be done in
cluster.conf.

1.3 DLM

As mentioned, the DLM does not use cman as a transport protocol, it makes its own connections using
TCP/IP. It gets the local IP address and the remote node IP addresses from cman (which gets them
indirectly from cluster.conf). By default the DLM uses port 21064 for communication.

DLM expects the transport to be reliable and ordered, and, ideally, fast. Under heavy GFS load the
DLM can generate a lot of lock traffic. Most DLM messages are very small, but they are coalesced
internally as far as possible to maximise network bandwidth use. During recovery (eg when a node

joins or leaves the cluster, or a GFS filesystem is mounted) much larger packets can be generated.

All network traffic in the dlm is processed by the dlm_send and dlm_recv kernel threads (work queues
in RHEL5). If you see dlm_recv high in the process CPU list then it is likely that a lot of work is
coming in from remote notes. All remote locking operations happen in this process. dlm_send is
responsible simply for sending the packets and coalescing messages together so should not use much
cpu time.

There is an option for DLM to use SCTP for communications rather than TCP. This is not currently
supported but it works in the same way as TCP communications except that multiple interfaces are
supported by SCTP, this is the only way to implement multi-homing.

The dlm starts up its communications when the first lockspace is created and shuts it down when the
last lockspace is removed, so don't just 'modprobe dlm' and expect to see sockets bound to port
21064.

When using TCP, the DLM might have two connections to another node. This is expected behaviour
and happens because two nodes might try to establish communications with each other at the same
time. It is not possible to close one of these connections without losing data on it. The overhead of
having two connections is minimal. If there are two connections between nodes then each node will
send on the connection it initiated, rather than the incoming connection from the other node.

2. Name resolution and cluster.conf

cman tries hard to match the local host name(s) to those mentioned in cluster.conf. Here's how it does
it:

1. It looks up $HOSTNAME in cluster.conf
2. If this fails it strips the domain name from $HOSTNAME and looks up that in cluster.conf
3. If this fails it looks in cluster.conf for a fully-qualified name whose short version matches the

short version of $HOSTNAME
4. If all this fails then it will search the interfaces list for an (ipv4 only) address that matches a

name in cluster.conf

cman will then bind to the address that it has matched.

It should be noted that RHEL4 (until very recently) had a bug in stage 3 of this process which meant
that it bound to the short name found, rather than the full name in cluster.conf. In fact this is what
prompted this document. An example will, I hope clarify this step:

Suppose the host has the $HOSTNAME myhost.mycompany.com but also has interfaces
accessible by names myhost.internal.mycompany.com and
myhost.remote.mycompany.com. It is possible to use
myhost.internal.mycompany.com as the node's name in cluster.conf and cman will find it.

In general I recommend that fully-qualified names are used for hostname and in cluster.conf as it
avoids a lot of ambiguity. If there is any complexity in the configuration it might also help to add the
nodename to the cman_tool join command line eg:

cman_tool join -n myhost.internal.mycompany.com

If you are ever in any doubt about what IP address cman is using for communications, the command
“cman_tool status” will enlighten you. It is worth mentioning here that cman does NOT lookup
the address of remote cluster nodes using cluster.conf. It expects them to be visible using the broadcast
or multicast address it was given to use. If the remote nodes are not available or only partially visible
via that route then all hell will break loose and the cluster will likely fall apart. In particular, connecting
two interfaces to the same piece of physical network can cause problems unless you explicitly set up
the correct routes. If in doubt consult a real networking expert.

I mentioned that the DLM gets all of its IP addresses from the local cman. It's important to realise that
cman only ever resolves it's own address – using the rules above. The other nodes' addresses are
obtained from communication with the remote nodes themselves - using the broadcast or multicast
messaging, and the DLM picks them up from cman. It does not resolve the names, ever.

3. Other Bits

I'll just briefly mention other parts of Cluster Suite in an attempt to clear up any confusions that have
occasionally arisen.

1. GFS does not use any networking itself. It relies on the DLM to do its locking
2. ccsd uses networking to distribute the cluster.conf files. The following two bullet points are

taken from the cluser wiki:
• 50006/TCP - Cluster Configuration System front-end port. This is used to obtain

configuration information from ccsd. Connections not from a reserved port (e.g. <1024) are
dropped. This port is only bound on loopback interfaces; remote access is disabled.

• 50008/TCP (ipv4) & 50009/TCP (ipv6) - Cluster Configuration System update ports. This
port is used to handle updates and/or changes to the cluster configuration file (cluster.conf).
Connections from outside the known-live cluster are dropped.

3. rgmanager, dlm_controld, groupd and clvmd all use CPG to communicate between nodes. CPG
is an internal protocol of openais/corosync and will travel over the same low-level (multicast UDP
usually) protocol of the heartbeat/token traffic. In addition rgmanager and clvmd also use the DLM,
so will be responsible for TCP traffic too.

4. ricci has its own networking protocol based on XML packets and running over TCP port 11111.
It reads the node names from cluster.conf and resolves them itself, independently of cman or
openais/corosync

4. Routing

None of the daemons do any special routing, they do normal networking send and receive calls. If you
have any special routing requirements the normal system routing utilities will work.

5. Diagnostic Tools

If you are experiencing networking problems with cluster suite, the first thing to check is that you are

using the correct IP address. cman_tool status will tell you this. Check it against cluster.conf and the
list above to see if it is behaving as you expect. If you can't even get cman up and running because of
suspected networking configuration problems then try starting the cluster with 'cman_tool join d'
which will give you more information about how cman is trying to resolve the host name.

Another handy utility is netstat, its -u and -t switches will show you which ports and addresses are
bound to UDP and TCP sockets respectively. If running as root, adding -p will also show you the
process ID and name.

For serious network diagnostic tasks, tcpdump or wireshark are what you need. The output from these
can be very cryptic but also immensely useful in diagnosing problems, you don't need to understand all
the output to find them helpful.

On a RHEL5 cluster

tcpdump port 5405

will show the token packets being passed around.

If you are experiencing really odd problems and are asked by a support or development engineer to
send in a tcpdump for diagnostic purposes it's important to add the -s0 switch to capture the whole
packet, eg

tcpdump -wmyfile.dmp -xs0 port 6809

will save traffic information to a file called myfile.dmp.

tcpdump can also be used to check DLM communications, however it's very important to make sure
than cman is communicating correctly first. As the DLM sends packets only as needed, there will be
nothing to see on a quiescent system, and a busy GFS system can soon overwhelm you with data. In
general, if cman is communicating correctly then DLM will too. If that is not the case then it's probably
a case of those pesky iptables rules again.

The ip command is helpful for determining which interfaces are bound to which multicast addresses, if
you suspect something is wrong here.

ip maddr ls
ip link ls

The tc command shows and changes the network queueing discipline:

tc qdisc show
qdisc pfifo_fast 0: dev eth0 root bands 3 priomap 1 2 2 2 1 2 0 0 1
1 1 1 1 1 1 1

Here you can see that priority 6 traffic is mapped internally to '0' (remembering to count the list from 0)
which schedules it ahead of other packets. If you load another networking queueing discipline then
make sure that it does something equivalent.

If you're serious about tracing DLM packets, then version 1.0.0 of wireshark has a dissector for the
RHEL5 DLM and corosync packets, the corosync one will need to be told the encryption key if it is to
make any sense of the contents though. Even if you don't have a recent enough version of wireshark to
include these decoders, it's handier than tcpdump in many ways because it can separate out the protocol
headers from the data. That can save a lot of effort and/or printouts with scribbled pencil marks on
them!

6. Bandwidth Use

6.1 RHEL5 CMAN
Even when quiescent, a RHEL5 cluster will generate a measurable network load. This is the
totem token being passed around the cluster members. In addition to this load, there are more
daemons using the openais messaging system for communications. In particular plocks use
openais messages and can add considerably to the networking traffic. In a future version of
RHEL5, the totem multi-ring system should become supported and allow the traffic in large
clusters to be split over several physical networks to help alleviate this.

Although it is possible to run several RHEL5 clusters on the same network, it is recommended
that RHEL5 clusters at the same site are run on separated networks.

6.2 DLM
The DLM uses whatever it can get depending on what it needs. That is, if you have a very busy
collection of GFS filesystems with lots of inter-node locking then you will see a lot of large
DLM packets. With fast nodes and a lot of traffic, it is possible to flood a network with DLM
traffic. It's impossible to put an exact figure on this because it depends on the GFS load, other
programs doing locking, and where the master & directory nodes for a lock is.
The addition or removal of a node from a DLM lockspace can cause a great deal of lock traffic
if lots of locks are active as locks are recovered and the lock directory is rebuilt

7. Connection Security

None of the cluster suite components implement much in the way of security on their connections. Red
Hat recommends that all cluster traffic is routed over an internal, ideally isolated, LAN or VLAN. This
not only ensures the security of cluster communications but should also allow for enough bandwidth
for a busy cluster to operate at full efficiency.

The DLM will refuse to accept new connections from nodes that are not known to CMAN, and will
only accept a maximum of two connections from any node that is known to CMAN. This is for reasons
detailed in section 1.4.

CMAN in RHEL5 & RHEl6 uses openais/corosync and always enables packet encryption. If no
security key is specified then cman will use the cluster name as the key. This does not provide good
security but is probably enough to dissuade casual snooping or spoofing. If you are serious about
preventing snooping of traffic then you should create a keyfile, securely distribute that around the

cluster and add its name to cluster.conf with a line similar to the following:

<cman keyfile=”/etc/cluster/cman_keyfile”/>

	Red Hat Cluster Suite Networking
	1. Overview of protocols
	2. Name resolution and cluster.conf
	3. Other Bits
	4. Routing
	5. Diagnostic Tools
	6. Bandwidth Use
	7. Connection Security

