
Never too late to learn new tricks

Daniel P. Berrangé
@

 KVM Forum 2019, Lyon

https://libvirt.org

Then: The last 14 years

https://libvirt.org

Then: The last 14 years

https://libvirt.org

Now: Virt usage is changing

● Libvirt architecture stable for 12+ years
– libvirtd, C language, handle OOM, GNULIB
– Refactoring is evolutionary not revolutionary

● Libvirt historically used with
– Data center virt (oVirt)
– Public/private cloud (OpenStack)
– Desktop virt (Boxes, virt-manager)

● New ideas/architecture concepts
– KVM inside containers (Kubernetes / KubeVirt)
– KVM outside containers (Kata Containers)
– MicroVMs for functions (Firecracker)

https://libvirt.org

Now: libvirt adaptation

● libvirt must be sustainable long term
– Attractive work/challenges for new contributors
– Attractive features for application developers

● Contributors must work efficiently
– Less time on grunt work / recreating wheels
– More time on features that matter to apps

https://libvirt.org

Now: Modular daemons

● libvirtd, all drivers in one process
– One driver can break all, no security isolation
– Also provides remote IP access

● vir${DRV}d, one driver per process
– virtqemud, virtxend, virtnetworkd,

virtstoraged, virt...d
– virtproxyd, remote IP access

● Libvirtd still default, switching in 2020
– App APIs stable, deployment tools impacted

https://libvirt.org

Just now: ENOMEM handling

● Linux malloc() (mostly) doesn’t fail
● Complexity from goto cleanup jumps

– Difficult to test thoroughly
– App code doesn’t handle ENOMEM

● Switch to abort() on ENOMEM
● Reduces burden for libvirt maintainers

https://libvirt.org

Just now: Automatic cleanup

● Libvirt already mandates GCC/Clang
– Can leverage C extensions from

● __attribute__((cleanup(func)) type var;

– Run ‘func’ when ‘var’ goes out of scope
– Eliminates majority of explicit free() calls
– Reduces memory leaks & code complexity
– Also close fd, unref object, unlock mutex

● Reduces burden for libvirt maintainers

https://libvirt.org

Now: GLib, C’s std library

● Libvirt written to POSIX API
“standard”
– Poor OS compliance, much optional
– Very low level, painful for direct use

● GNULIB papers over many differences
– Tied to autotools with complex bootstrap

● Libvirt adds many higher level APIs
– Re-invents the wheel vs many other C apps/libs

https://libvirt.org

Now: GLib, C’s std library

● GLib is a high level C “std lib”
– Many data structures
– Event loop impl
– Objects for sockets, I/O, DBus services/clients
– Introspection for language bindings

● Previously avoided due to ENOMEM abort()
● Reduces burden for libvirt maintainers

– Less worrying about portability / no more GNULIB
– More time on interesting virt features

https://libvirt.org

Now: Language consolidation

● Libvirt is written in C
– Hey, what’s all this python, perl, shell, xsl, html, markdown,

m4, make, automake, sed, awk…
● Reduce knowledge burden on contributors

– One language for each job
● shell, sed, awk, perl → python

– Broader developer talent pool
● shell, sed, awk, make, m4, automake → meson

– Attractive/simpler DSL for build tools
● XSL, HTML, Markdown → RST (w/ Pelican/Sphinx ?)

– Simpler markup language & templating system

https://libvirt.org

Next: Embedded QEMU driver

● Libvirt design suits traditional virt usage
● VMs can be used as an service technology

– eg libguestfs spawns a QEMU appliance
● Use cases shouldn’t interfere
● New driver mode “qemu:///embed”

– No libvirtd involved
– Runs inside app process
– Invisible to other libvirt clients
– Isolated to private directory subtree

https://libvirt.org

Then: Memory unsafe languages

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

● ~70% of all reported CVEs are memory
safety bugs in C/C++ code
– Use after free, stack smashing, heap corruption
– Despite many analysis tools & better compilers,

CVE rate has not improved in 12+ years
– Memory safety CVEs are preferentially exploited

● Writing C/C++ without memory mgmt
errors is not possible

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

https://libvirt.org

Next: Memory safe languages

● Common languages had too many
caveats for systems programming
– Java – JVM memory footprint
– Python – limited performance / thread scaling

● Rust & Golang change the situation
– Perf/footprint close to/matching/exceeding C
– Golang has simplicity of a language like Python
– Young but rapidly growing / maturing ecosystem

● C is no longer the sensible choice

https://libvirt.org

Next: Memory safe languages

● libvirt to integrate Rust, Golang
– Still TBD which (one, other, both)

● Targeted adoption in existing code
– Rewriting has costs (stability, reviewer time)
– Benefits must outweigh cost

● Long term effort
– Conversion work will last 5, 10, 1729,... years
– Still need to deliver user features effectively

https://libvirt.org

Then: Autotools build system

● Many languages needed
– shell, sed, awk, m4, make, autoconf, automake,

python, perl, and more
– Large burden for new contributors to learn
– Many poorly understood even by regular

contributors
● ‘configure’ a 1.8 MB, very slow shell

script
– Increasingly dominates build time, can’t be

parallelized

https://libvirt.org

Next: Meson build system

● A self contained DSL for build rules
– Well documented, simple to understand syntax
– Call out to python if needed
– Active & responsive upstream for RFEs
– Sensible defaults (parallel build, compiler flags

on error)
● Older distros may have to bundle

meson
– Better than bundling 1.8 MB autoconf shell script

https://libvirt.org

Now: mailing list code review

● New contributor patch submit pitfalls
– HTML mail instead of plain text
– Mangled patches from mail client
– Incorrectly threaded series
– Not labelling series with version numbers
– Sending plain ‘diff’ output instead of a git patch
– Subscribe to yet another service
– Not basing on git master
– Corporate legal privacy / copyright signatures
– Unintelligible mail quoting in replies (Outlook)
– DMARC/DKIM problems withg mailing lists

● First impressions matter for new contributors

https://libvirt.org

Next: Web based code review

● New contributor familiarity
– More widely used than mailing lists
– Fewer ways to mess up patch submission
– More easily see outstanding submissions

● Remote API service
– Rich metadata for analysis / reporting
– Build custom tools to ease development

● Ties into bug tracking & CI services
● Plan is still TBD...watch this space

F I N

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

