

## Red Hat Ceph Storage

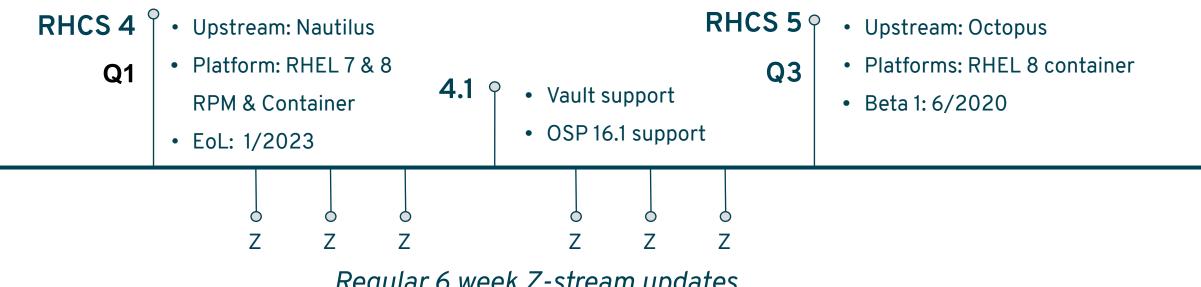
#### Enterprise and Community Roadmap

Sage Weil

Federico Lucifredi

Uday Boppana

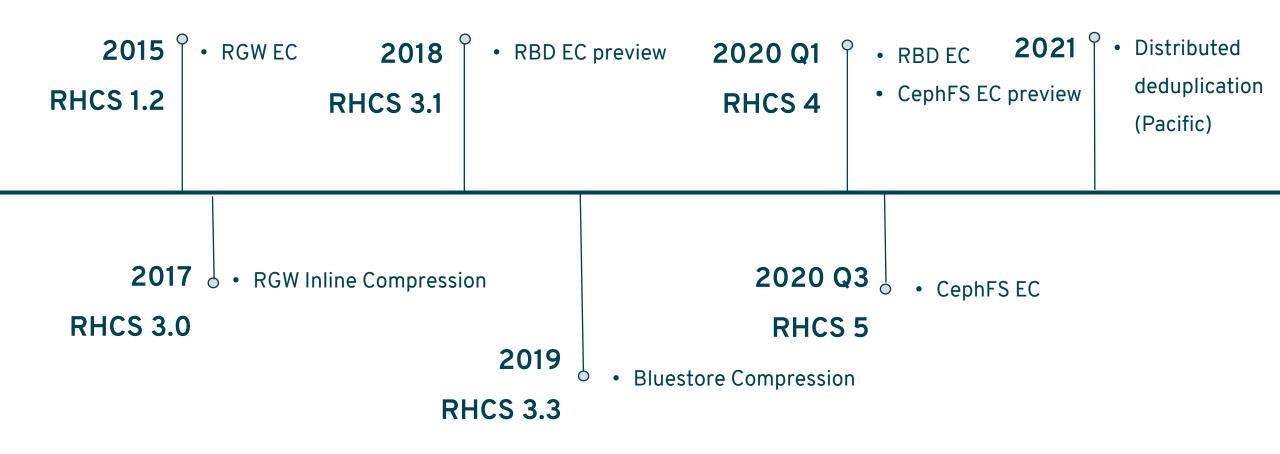





## Red Hat's Technology Roadmap






## Red Hat Ceph Storage versions



Regular 6 week Z-stream updates



## **Data Reduction**



STRATEGIC ROADMAP – SUBJECT TO CHANGE



## Security

| 2015 <sup>°</sup><br>RHCS 1.2  | • Dmcrypt 2017 • RHCS 3.0 | • RGW in<br>encryp     |                                    | • | FIPS-140 <b>2021 Q1</b><br>Messenger v2<br>encryption<br>Namespaces                                                                                                                      | • S3 WORM<br>(TP)                                                |
|--------------------------------|---------------------------|------------------------|------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 2016<br>RHCS 1.3.2<br>RHCS 2.0 | • PIE (2.0)               | )<br>2018 (<br>HCS 3.2 | 2020 G<br>RHCS<br>• Security Guide | - | <ul> <li>Support for NVMe set<br/>drive key manageme</li> <li>SSE-KMS Support (E<br/>and KMiP)</li> <li>SSE-S3 support Ser<br/>data encryption (Teo<br/>S3 STS (IAM identity)</li> </ul> | ent in MON (TP)<br>Barbican, Vault<br>ver Managed<br>ch Preview) |



📥 Red Hat

## CephFS

| 2017 <sup>°</sup><br>RHCS 3 | • Support begins 2020 Q1 • OCS 4.2 RHCS 4                | <ul> <li>Kubernetes and Rook         <ul> <li>PV RWX</li> <li>CSI driver</li> </ul> </li> <li>10 Developers</li> </ul> | 2021 <sup>(</sup><br>RHCS 6 | <ul> <li>SMB in Tech Preview</li> <li>scale by user</li> </ul>                                          |
|-----------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------|
| 2018                        | • Key Customers<br>• [chipmaker]<br>• Monash 2020<br>OCS | RH<br>DQ3 · Snapshot clones                                                                                            | ICS 5 • 1                   | Scale to 10000 PVs turning<br>NFS<br>Key Customers: (round 2)<br>o [chipmaker]<br>o [major hardware OEM |

STRATEGIC ROADMAP – SUBJECT TO CHANGE

|                           |                                                                                                                          | Manageability                                                                 | 2020 Q3<br>RHCS 5.0                                                             | <ul> <li>Stable mgmt API</li> <li>Dashboard v.3</li> </ul>                                                              |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2015 0<br>RHCS 1.2        | • ceph-deploy 201<br>RHCS 3.0<br>OSP 1                                                                                   | 0 (ceph-ansible) OCS 4.2                                                      | OCS 4.5<br>• Rook<br>• "Opinionated"<br>design                                  | <ul> <li>RGW multisite</li> <li>replacing OSDs</li> <li>user mgmt</li> <li>Cephadm</li> <li>Independent mode</li> </ul> |
| 2015<br>RHCS 1.3<br>OSP 7 | <ul> <li>Major version<br/>Upgrades</li> <li>director intg.<br/>(puppet-ceph)</li> <li>2016</li> <li>RHCS 2.0</li> </ul> | 2018 • Hyperconverged<br>Ceph + OpenStack<br>2020 Q1<br>Ceph-ansible RHCS 4.0 | 2020 Q2<br>OSP 16.1<br>• Dashboard v.2 (N<br>• Install UI<br>• Bluestore migrat |                                                                                                                         |



## **Business Continuity**

| 2015 <sup>(</sup><br>RHCS 1.2<br>OSP 7 | <ul> <li>RBD Snapshots 20</li> <li>Cinder RHCS 3<br/>Snapshot provisioning</li> <li>Stretch clusters</li> </ul> |                     | D Trash 2020 Q1<br>RHCS 4 |                          | W Archive<br>ne (TP) | <b>2021</b> °                                   | CephFS<br>Geo Rep<br>(Pacific) |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|--------------------------|----------------------|-------------------------------------------------|--------------------------------|
| 2016<br>RHCS 2.0                       | • RGW Multisite                                                                                                 | 2019 Q3<br>RHCS 3.3 | F                         | 20 Q3<br>HCS 5<br>CS 4.6 | • CephF              | hirror<br>hot mode<br>S snapshot<br>h cluster m |                                |



### Performance & Scale

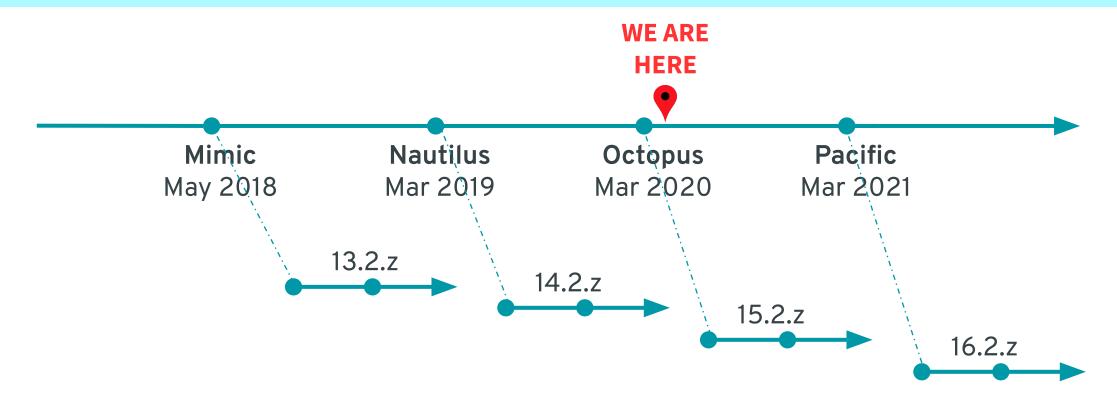
| <ul> <li>2015 • "Petabyte release"</li> <li>RHCS 1.3 • Bucket sharding</li> <li>• Scrubbing window</li> <li>• Alloc and cache hinting</li> </ul>                                                                |                                                         | OCS 4.2<br>RHCS 4.0                                                                                                                       | <ul> <li>• 5,000 PVs turning</li> <li>• Async Messenger</li> <li>• Consistent IO on<br/>recovery</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>First support for DBMS</li> <li>Thread cache tuning</li> <li>1.8 PB deployed in one<br/>hour (1040 OSDs)</li> <li>10PB cluster 2018<br/>RHCS 2.0</li> <li>STRATEGIC ROADMAP – SUBJECT TO CH</li> </ul> | 2019<br>RHCS 3.2<br>RHCS 3.3<br>• RocksDB<br>journaling | <ul> <li>• 2X performation</li> <li>• 1 billion objete</li> <li>• Bluestore</li> <li>• Beast.ASIO</li> <li>• 12 TB drive state</li> </ul> | OCS 4.5• Bluestore v.2RHCS 5• New LibRBD cache                                                              |

STRATEGIC ROADMAP – SUBJECT TO CHANGE

| 2017<br>RHCS 3.0 | <ul> <li>Back</li> <li>Certi</li> <li>Objection</li> <li>completion</li> <li>encry</li> <li>Dyna</li> </ul> | up ISV<br>fications<br>ct granular<br>oression & 2020 Q1<br>(ption (SSE-C)<br>mic bucket<br>sharding | notifica<br>• Vault<br>integra<br>• STS su<br>• RGW A | ations<br>ation <b>2021</b> <sup>(</sup><br>upport<br>archive                                                                               | <ul> <li>Server managed<br/>encryption (SSE-S3)</li> <li>Policy based tiering<br/>to public cloud</li> <li>Object lock (TP)</li> <li>S3 Worm (TP)</li> </ul> |
|------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 19 Q3<br>S 3.3                                                                                              | <ul> <li>New RGW</li> <li>Web server</li> <li>Performance</li> </ul>                                 | Zone (<br>20 Q3 0<br>RHCS 5                           | <ul> <li>KMIP support for<br/>key managemen<br/>(SSE-KMS)</li> <li>Multi-site<br/>scalability and<br/>usability<br/>enhancements</li> </ul> |                                                                                                                                                              |








# Ceph's Community Roadmap



## **RELEASE SCHEDULE**





- Stable, named release every  $9 \rightarrow 12$  months
- Backports for 2 releases
- Upgrade up to 2 releases at a time
  - (e.g., Luminous → Nautilus, Mimic → Octopus)



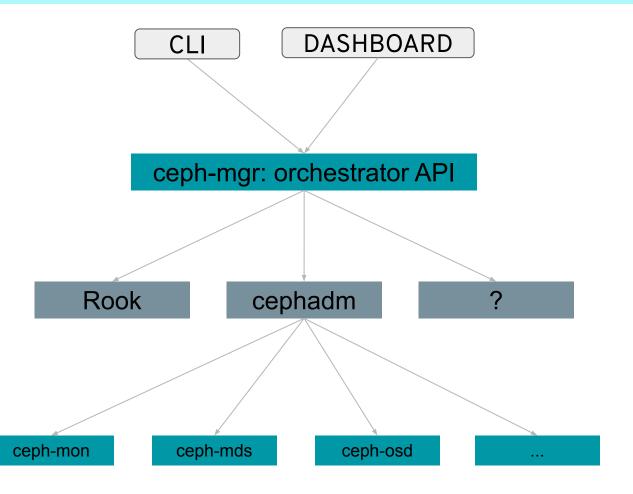
## WHAT'S NEW IN CEPH OCTOPUS





Usability

### Quality


### Performance

### Multi-site Ecosystem

## ORCHESTRATOR API



- End-to-end management experience
- mgr API to interface with deployment tool
  - Rook (deploy+manage via Kubernetes)
  - cephadm (deploy+manage via ssh)
- Expose provisioning functions to CLI, GUI
  - Create, destroy, start, stop daemons
  - Blink disk lights
- Pave way for cleanup of docs.ceph.com
- Automated upgrades



### CEPHADM



#### • Easy

- Simple 'bootstrap' to create new cluster
- Most services provisioned automatically
  - Mon, mgr, monitoring for dashboard
- Easy mode for OSDs
  - --all-available-devices
- Everything works out-of-the-box
- Minimal dependencies
  - Systemd
  - Container runtime (podman or docker)
  - Python 3
  - LVM

- Container based
  - Single build artifact
  - Works consistently on any host OS
  - Easier registry-based experience
  - Easily enable disconnected environments
- Robust
  - "Declarative" management style
  - Automatic or controlled placement of daemons
  - Automated upgrades

 Fully replace ceph-ansible, ceph-deploy, puppet-ceph, DeepSea, etc.

### DASHBOARD



#### • Robust management GUI for cluster operations

- All core Ceph services: object, block, file
- OSD creation with DriveGroups
  - Filter by host, device properties (size/type/model)
- Some multisite capabilities
- Some legacy protocol support (NFS, SMB, iSCSI)
- Targets "storage admins" as well as experienced Ceph power users
  - Storage management (creating pools, volumes, etc.)
  - Robust monitoring (high-level, troubleshooting, and diagnostics)
  - Cluster infrastructure management (provisioning hosts, drives, etc.)
- Integrations
  - External authentication (SAML, OpenID)
  - Roles
  - External Prometheus for metrics

## MISC RADOS USABILITY

- Hands-off defaults
  - PG autoscaler on by default
  - Balancer on by default
- Quality internal health alerts
- Health alert muting
  - TTL on mutes
  - Auth-unmute when alerts change, increase in severity
- Ongoing simplification and cleanup of administration/operations
- 'ceph tell ...' and 'ceph daemon ...' unification
  - Consistent and expanded command set via either (over-the-wire or local unix socket)





### Usability



### Performance

### Multi-site Ecosystem

## **RADOS ROBUSTNESS**



- Partial object recovery
  - Re-sync only modified portion of large object after small overwrite
- Improved prioritization of PG recovery
  - Focus on PGs that are inactive
  - Better handling of planning when both primary and replica OSDs need to do work
- Snapshot trimming improvements
  - Eliminate metadata in OSD map that (previously) would grow with cluster age
  - Simpler code; occasional scrubbing
- Close "read hole"
  - Eliminate very rare case where partitioned OSD + client could serve a stale read

## TELEMETRY AND CRASH REPORTS



#### • Opt-in

- Require re-opt-in if telemetry content expanded
- Explicitly acknowledge data sharing license
- Telemetry channels
  - **basic** cluster size, version, etc.
  - **ident** contact info (off by default)
  - **crash** anonymized crash metadata
  - **device** device health (SMART) data
- Dashboard nag to enable
- Public dashboard launch Real Soon Now

- Backend tools to summarize, query, browse telemetry data
- Initial focus on crash reports
  - Identify crash signatures by stack trace (or other key properties)
  - Correlate crashes with ceph version or other properties
- Improved device failure prediction model
  - Predict error rate instead of binary failed/not-failed or life expectancy
  - Evaluating value of some vendor-specific data





### Usability

### Quality

### Performance

### Multi-site Ecosystem

## **RADOS: BLUESTORE**



- RocksDB improvements for metadata storage
  - Prefetching support during compaction, key iteration, object enumeration
  - Selective use of RangeDelete
- Improved cache management
  - Better use of cache memory
  - New inline trimming behavior (big performance bump!)
- Per-pool omap utilization tracking
  - To match Nautilus' per-pool data usage (and compression) stats

## MISC PERFORMANCE



#### <u>RGW</u>

- More async refactoring
  - Efforts started with Beast frontend a few releases ago
  - Goal is end-to-end boost::asio request processing
- Avoid omap where unnecessary
  - FIFO queues for garbage collection
  - Selective use of DeleteRange

#### <u>RBD</u>

- (lib)rbd cache replacement
  - Simpler IO batching, writearound cache
  - General cleanup of IO path code
  - Significant (2x+) improvement for small IO
    - e.g., ~18kIOPS → 70kIOPS for 4KiB
       writes





### Usability

Quality

### Performance

Multi-site

Ecosystem

## **RBD SNAPSHOT-BASED MIRRORING**

- Today: RBD mirroring provides async replication to another cluster
  - Point-in-time ("crash") consistency
  - Perfect for disaster recovery
  - Managed on per-pool or per-image basis
- rbd-nbd runner improvements to drive multiple images from one instance
- Vastly-simplified setup procedure
  - One command on each cluster; copy+paste string blob
- New: snapshot-based mirroring mode
  - (Just like CephFS)
  - Same rbd-mirror daemon, same overall infrastructure/architecture
  - Will work with kernel RBD
    - (RBD mirroring today requires librbd, rbd-nbd, or similar)

## **RGW PER-BUCKET REPLICATION**

- Current multi-site supports
  - Federate multiple sites
  - Global bucket/user namespace
  - Async data replication at site/zone granularity
- Octopus adds bucket-granularity replication
  - Finer grained control
  - Currently experimental until more testing is in place





### Usability

### Quality

### Performance

## Multi-site Ecosystem

## NEW WITH CEPH-CSI AND ROOK

- Much investment in ceph-csi
  - RWO and RWX support via RBD and/or CephFS
  - Snapshots, clones, and so on
- Rook
  - Turn-key ceph-csi by default
  - Dynamic bucket provisioning
    - ObjectBucketClaim
  - Run mons or OSDs on top of other PVs
  - Upgrade improvements
    - Wait for healthy between steps
    - Pod disruption budgets
  - Improved configuration experience

## WHAT'S COMING IN CEPH PACIFIC

-





Usability

### Quality

### Performance

### Multi-site Ecosystem

## ORCHESTRATION



- Cephadm improvements
  - Resource-aware service placement (memory, CPU)
  - Haproxy, NFS, SMB, RGW-NFS support
- Rook integration improvements
  - Provision RGW
  - Load balancer / Service management

- Dashboard integrations
  - Improved OSD workflows to replace failed disks, preview OSD creation, zap old devices
  - Add/configure daemons (mons, mgr,s RGW, NFS, SMB, iSCSI)
  - Initiate and monitor upgrades

## MISC USABILITY AND FEATURES



#### <u>RBD</u>

- Expose snapshots via RGW (object)
- "Instant" clone/recover from external (RGW) image
- Improved rbd-nbd support
  - Expose kernel block device with full librbd feature set
  - Improved integration with ceph-csi for Kubernetes environments

#### <u>RGW</u>

• Deduplicated storage

#### <u>CephFS</u>

- 'fs top'
- NFS and SMB support via orchestrator





### Usability



### Performance

### Multi-site Ecosystem

## STABILITY AND ROBUSTNESS

#### <u>RADOS</u>

- Enable 'upmap' balancer by default
  - More precise than 'crush-compat' mode
  - Hands-off by default
  - Improve balancing of 'primary' role
- Dynamically adjust recovery priority based on load
- Automatic periodic security key rotation
- Distributed tracing framework
  - For end-to-end performance analysis

### <u>CephFS</u>

- MultiMDS metadata scrub support
- MultiMDS metadata balancing improvements
- Multi-filesystem testing and auth management improvements
- Major version upgrade improvements

## TELEMETRY



- Work continues on backend analysis of telemetry data
  - Tools for developers to use crash reports identify and prioritize bug fixes
- Adjustments in collected data
  - Adjust what data is collected for Pacific
  - Periodic backport to Octopus (we re-opt-in)
  - e.g., which orchestrator module is in use (if any)
- Drive failure prediction
  - Building improved models for predictive drive failures
  - Expanding data set via Ceph collector, standalone collector, and other data sources





## Usability

## Quality

## Performance

## Multi-site Ecosystem

# MISC PERFORMANCE



#### <u>CephFS</u>

- Async unlink and create
  - Avoid client-MDS round-trip
  - rm -r, tar xf, etc
  - Support in both libcephfs and kernel
- Ceph-fuse performance
  - Take advantage of recent libfuse changes

#### <u>RGW</u>

- Data sync optimizations, sync fairness
- Sync metadata improvements
  - omap -> cls\_fifo
  - Bucket index, metadata+data logs
- Ongoing async refactoring of RGW
  - Based on boost::asio

# RADOS: BLUESTORE

 $\bigcirc$ 

- Sharded RocksDB
  - Improve compaction performance
  - Reduce disk space requirements
- In-memory cache improvements
- SMR
  - Support for host-managed SMR HDDs
  - Targeting cold-stored workloads (e.g., RGW) only

# PROJECT CRIMSON



#### <u>Why</u>

- Not just about how many IOPS we do...
- More about IOPS per CPU core
- Current Ceph is based on traditional multi-threaded programming model
- Context switching is too expensive when storage is almost as fast as memory
- New hardware devices coming
  - DIMM form-factor persistent memory
  - ZNS zone-based SSDs

#### <u>What</u>

- Rewrite IO path in using Seastar
  - Preallocate cores
  - $\circ$  One thread per core
  - Explicitly shard all data structures and work over cores
  - $\circ$   $\,$  No locks and no blocking
  - Message passing between cores
  - Polling for IO
- DPDK, SPDK
  - Kernel bypass for network and storage IO
- Goal: Working prototype for Pacific





## Usability

Quality

#### Performance

Multi-site

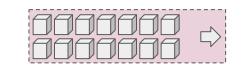
Ecosystem

# **CEPHFS MULTI-SITE REPLICATION**

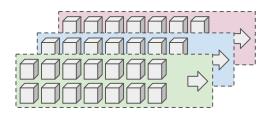


- Arbitrary source tree, destination in remote cluster
- Sync snapshots via rsync
- May support non-CephFS targets

- Discussing more sophisticated models
  - Bidirectional, loosely/eventually consistent sync
  - Simple conflict resolution behavior?


# MOTIVATION, OBJECT




• Nodes scale up (faster, bigger)



- Clusters scale out
  - Bigger clusters within a site



- Organizations scale globally
  - Multiple sites, data centers
  - Multiple public and private clouds
  - Multiple units within an organization



- Universal, global connectivity
  - Access your data from anywhere
- API consistency
  - Write apps to a single object API (e.g., S3) regardless of which site, cloud it is deployed on
- Disaster recovery
  - Replicate object data across sites
  - Synchronously or asynchronously
  - Failover application and reattach
  - Active/passive and active/active
- Migration
  - Migrate data set between sites, tiers
  - $\circ$  While it is being used
- Edge scenarios (caching and buffering)
  - Cache remote bucket locally
  - $\circ$  Buffer new data locally

# **RGW MULTISITE FOR PACIFIC**

- Project Zipper
  - Internal abstractions to allow alternate storage backends (e.g., storage data in external object store)
  - $\circ$  Policy layer based on LUA
  - Initial target: tiering to cloud (e.g., S3)
- Dynamic reshard vs multisite support





## Usability

### Quality

#### Performance

# Multi-site Ecosystem

## ROOK



- External cluster support
  - Provision storage volumes from an existing external Ceph cluster
  - Rook manages ceph-csi and provides the same CRDs for storage pools, object stores, volumes, etc.

- Rook: RBD mirroring
  - Manage RBD mirroring via CRDs
  - Investment in better rbd-nbd support to provide RBD mirroring in Kubernetes
  - New, simpler snapshot-based mirroring
- Rook: RGW multisite
  - Federation of multiple clusters into single namespace
  - Site-granularity replication

# OTHER ECOSYSTEM EFFORTS

#### <u>Windows</u>

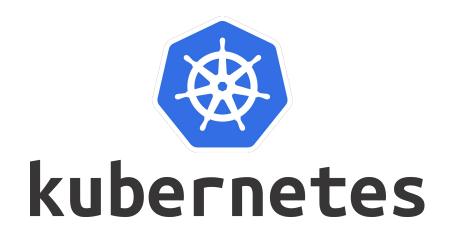
- Windows port for RBD is underway
- Lightweight kernel pass-through to librbd
- CephFS to follow (based on Dokan)

#### Performance testing hardware

- Intel test cluster: officianalis
- AMD / Samsung / Mellanox cluster
- High-end ARM-based system?

#### ARM (aarch64)

- Loads of new build and test hardware arriving in the lab
- CI and release builds for aarch64


#### <u>IBM Z</u>

- Collaboration with IBM Z team
- Build and test

# WE INTEGRATE WITH CLOUD ECOSYSTEMS













# OPEN DEVELOPMENT COMMUNITY

- Ceph is open source software!
  - Mostly LGPL2.1/LGPL3
- We collaborate via
  - GitHub: <u>https://github.com/ceph/ceph</u>
  - <u>https://tracker.ceph.com/</u>
  - E-mail: dev@ceph.io
  - #ceph-devel on irc.oftc.net
- We meet a lot over video chat
  - See schedule at <u>http://ceph.io/contribute</u>
- We publish ready-to-use packages
  - CentOS 7, Ubuntu 18.04
- We work with downstream distributions
  - Debian, SUSE, Ubuntu, Red Hat



