< redhat

Programming with the Netpoll API
Linux Kongress 2005

Jeff Moyer <jmoyer@redhat.com>
Senior Software Engineer

‘. redhat

Contents

Netpoll and its origins
Network driver primer
Netpoll inner-workings
Quick-start guide to the API
Extending netconsole

Moving forward

’_ redhat

Netpoll Origins

2.4 kernel crash dump solution — netdump (Ingo Molnar)
netdump
remote syslog
netlog / netconsole
Requirements
send / receive packets when kernel is crashed
send out log messages from interrupt context
2.6 — core architecture abstracted and generic API created (Matt Mackall)

kgdb support added

’_ redhat

The Netpoll API

API which provides a means for implementing UDP clients and servers in the

kernel.

Operates mostly independently from the core network stack

Used by “applications” which require network communications when the system
IS quiesced

netconsole
kgdb
netdump

Each netpoll client describes a single connection (src/dst ip:port)

’_ redhat

Network Driver Primer

Sending packets: hard start xmit
When is it safe to call?
irgs enabled, bh's disabled
dev->xmit lock held
netif queue stopped returns false (0)
Device Output Queue
netif_stop_queue
out of TX descriptors
link down event

driver unload

’_ redhat

Network Driver Primer (cont'd)

netif wake_queue
TX descriptors back to a sane level
link up event

netif _queue_stopped

boolean test

’_ redhat

Receiving Packets

Interrupt routine

Process and ACK interrupts
(duh!)

Schedule packets for delivery to
the network stack

netif _rx
Clean up any free RX or TX
descriptors™ T
irq routine

T

incoming packets
ot Sl Sl o

’_ redhat

The New API

Theory of operation
Faster network adapters cause many interrupts
Interrupts are bad, mm'kay?

Switch to polling mode until the “storm” passes

Polling loop
NAPI polls are scheduled for the CPU on which the interrupt was received
Only one CPU can execute the poll routine at a time, and it is not reentrant!

Each interface is given a budget, whose default is set in the driver code
(device weight)

’_ redhat

Receiving Packets with NAPI

Interrupt routine:
Process and ACK interrupts
Disable interrupts on this device
Schedule a NAPI poll if necessary
net rx action (network bh handler) calls the NAPI poll routine, which:
delivers the packet to the net stack
cleans up any free RX or TX descriptors*

Interrupts are re-enabled when the device has no more pending work

’_ redhat

Receiving Packets (NAPI)

incoming packets

4> >

4>

netif rx_schedule

T

netif _receive_skb

irq routine

T

|

device poll routine

|

net_rx_action

‘. redhat

Netpoli

’_ redhat

Netpoll Implementation

Driver Hooks
Polling
Sending Packets
Real network device
Bonded network device
What to do when polling fails

Receiving Packets

’_ redhat

Netpoll — Driver Interface

Polling mode
needs to work with irg's disabled
needs to work when the system is crashed

requires special hook(s) in network drivers

Typlcal poll controller hook:

static void tg3 poll controller(struct net device *dev)
{
struct tg3 *tp = netdev priv(dev);
tg3_interrupt(tp->pdev->irq, dev, NULL);

’_ redhat

Sending Packets

APl Routine: netpoll send udp

Directly calls driver's hard_start xmit routine

Needs to handle the netif gueue stopped Case

dev->poll controller

poll_napi(dev—>poll)

’_ redhat

Sending Packets

netpoll_send_udp

i

netpoll_send_skb

’_ redhat

Sending Packets

netpoll_send_udp

i netif queue stopped ?

>
netpoll_send_skb

netpoll_poll

’_ redhat

Sending Packets

netpoll_send_udp

i

netpoll_send_skb

netpoll_poll

dev->poll_controller

’_ redhat

Sending Packets

netpoll_send_udp

i

netpoll_send_skb

netpoll_poll

dev->poll_controller

’_ redhat

Sending Packets

netpoll_send_udp

i

netpoll_send_skb

netpoll_poll

dev->poll_controller

dev->poll

’_ redhat

Sending Packets

netpoll_send_udp

i

netpoll_send_skb

netpoll_poll

dev->poll_controller

dev->poll

’_ redhat

Sending Packets

netpoll_send_udp

i

netpoll_send_skb |

netpoll_poll

dev->poll_controller

dev->poll

’_ redhat

Sending Packets

netpoll_send_udp

i

netpoll_send_skb |

|

dev->hard_start xmit

netpoll_poll

dev->poll_controller

dev->poll

’_ redhat

Sending Packets — Bonding Driver

netpoll_send_udp

i

netpoll_send_skb

netpoll_poll

dev->poll_controller

dev->poll

’_ redhat

Sending Packets — Bonding Driver

netpoll_send_udp

i

netpoll_send_skb |

dev->hard_start xmit

- bond_3ad_xmit_xor |

netpoll_poll

dev->poll_controller

dev->poll

’_ redhat

Sending Packets — Bonding Driver

netpoll_send_udp

i

dev->hard_start xmit

- bond_3ad_xmit_xor

:

J

netpoll_send_skb |

netpoll_poll

dev->poll_controller

dev->poll

bond_dev_queue xmit

’_ redhat

Sending Packets — Bonding Driver

netpoll_send_udp

i

|

dev->hard_start xmit

—® netpoll_send_skb

netpoll_poll

dev->poll_controller

dev->poll

bond_dev_queue xmit

’_ redhat

Sending Packets — Bonding Driver

netpoll_send_udp

i

dev->hard_start xmit

e.g. e100_xmi’[_frameJ

—® netpoll_send_skb

netpoll_poll

dev->poll_controller

dev->poll

bond_dev_queue xmit

’_ redhat

When Polling Fails...

netif _queue_stopped returns true when:
no TX descriptors
link is down
Sending packets synchronously can fail!
Drop routine:
can do whatever the module author wants it to do

netpoll queue IS provided as a means to queue the packet for later delivery
(in process context)

if not specified, the packet will be dropped

’_ redhat

Receiving Packets (hon-NAPI)

incoming packets

>

netpoll_rx

—>
netif_rx OK
N
T DROP
irq routine

|

4>

=

’_ redhat

Receiving Packets (NAPI)

e
netif_rx_schedule netif_receive_skb netpoll_rx
47
irq routine device poll routine
incoming packets T T

net_rx_action

’_ redhat

Sending Packets in the Receive Path

netif receive skb

T

dev->poll

T

net_rx_action

netpoll_rx

A4
netpoll_send udp

netpoll_send skb -«

.

dev->hard start xmit

netpoll_poll

dev->poll_controller

dev->poll

’_ redhat

Using the API

Initialization
Sending Packets
Receiving Packets

Specifying a drop routine

‘. redhat

Client Data Structure

struct netpoll {
struct net device *dev;
char dev_name[l6], *name;
void (*rx hook) (struct netpoll *, int, char *, int);
void (*drop) (struct sk buff *skb);
u32 local ip, remote ip;
ulé local port, remote port;

unsigned char local mac[6], remote mac[6];

}i

’_ redhat

Netpoll Module Initialization

int netpoll parse options(struct netpoll *np, char *opt);
np: struct netpoll with name, drop, and rx hook filled in

opt: “[src-port]@[src-ip]/[dev],[tgt-port]@<tgt-ip>/[tgt-
macaddr]”

Returns 0 on success, -1 on failure

int netpoll setup(struct netpoll *np);

np: struct netpoll, initialized via a call to
netpoll parse options

Returns: 0 on success, -1 on failure

’_ redhat

APl — Sending & Receiving Packets

void netpoll send udp(struct netpoll *np, const char *msg, int len);
msg: byte stream to be sent

len: length of byte stream contained in msg

void rx hook(struct netpoll *np, short source, char *data, int dlen);
data: contents of received packet; UDP headers stripped

dlen: length of data

Called in BH context for NAPI drivers, interrupt context for old drivers.

void drop(struct sk buff *skb);
skb: socket buffer that could not be sent.

void netpoll queue(struct sk buff *skb);

queues the packet for later delivery, in process context

’_ redhat

Extending Netconsole

Goals

allow remote user to issue sysrq commands via netconsole

Non-goals

Support a full interactive console

‘. redhat

Extending Netconsole (cont'd)

static struct netpoll np = {
.name = "netconsole",
.dev_name = "ethO",
.local port = 6665,
.remote_port = 6666,
.remote mac = {Oxff, Oxff, Oxff, Oxff, Oxff, Oxff},
.drop = netpoll queue,

.rx_hook = netconsole rx;

}i
void netconsole rx(struct netpoll *nps, short source, char *data, int dlen)
{
while (count < dlen) {
if (data[count] < 'a' || data[count] > 'Z' ||
data[count] == '\n') {
count++;
continue;
}

handle sysrq(msg->msg[count], NULL, NULL);

count++;

’_ redhat

Netpoll TODO

Allow more than one netpoll client to register an rx hook
Netpoll calls drivers in improper context
Implement separate hard_start_xmit routine for every network driver?

Fix locking so that queuing is not necessary all of the time

‘. redhat

References

netdev mailing list <netdev@vger.kernel.org>

Linux kernel sources, versions 2.4 and 2.6 http://www.kernel.org/

http://people.redhat.com/jmoyer/

mailto:netdev@vger.kernel.org
http://www.kernel.org/

