

Data Security and Storage Hardening In Rook and Ceph

Federico Lucifredi, Ana McTaggart, Michael Hackett

me! me! me!

Things I worked on

Red Hat Ceph Storage **Ubuntu Server** Landscape **SUSE** Studio **SLES** SMT Ximian Red Carpet Man (I)

Rook in brief

Cloud Native Security CONFERENCE NORTH AMERICA

Rook

- Ο
- \bigcirc
- Ο
- Cloud-native storage for k8s Ceph-based: hyperscale File, Block and Object Storage on top of compute: 0
- Ο
- Ο
- 0
- hyper-converge ...or optionally external storage Highly resilient Highly available Automated resource management 0 w/operators

Threat Model

- Identify threat actors
 - Nation states
 - Organized crime
 - Hacker groups
 - Motivated individuals
 - Privileged insiders
 - Script kiddies
 - 0

Network Security zones

- Public Zone
 - **not** the public_network in Ceph
- Ceph Client Zone
- Storage Access Zone
 - public_network in Ceph
- Ceph Cluster zone

Network Security zones

- Public Zone
 - **not** the public_network in Ceph
- Ceph Client Zone
- Storage Access Zone
 - public_network in Ceph
- Ceph Cluster zone

Network Security zones

- Public Zone
 - **not** the public_network in Ceph
- Ceph Client Zone
- Storage Access Zone
 - public_network in Ceph
- Ceph Cluster zone
 - cluster_network in Ceph

Connecting Security zones

Cloud Native Security CONFERENCE NORTH AMERICA

- Public Zone
 - **not** the public_network in Ceph
- Ceph Client Zone
- Storage Access Zone
 public network in Ceph
- Ceph Cluster zone
 - cluster_network in Ceph

Connecting Security zones

Cloud Native Security CONFERENCE NORTH AMERICA

- Public Zone
 - **not** the public_network in Ceph
- Ceph Client Zone
- Storage Access Zone
 public network in Ceph
- Ceph Cluster zone
 - cluster_network in Ceph

Encryption and Key Management

- Data at rest (OSD)
 OSDs can be encrypted with dmcrypt at creation.
 Write-ahead logs, journals and metadata stores can also be secured
 LUKS provides a variety of cryptographic options
 All data at rest is encrypted irrespective of access protocol
 FIPS 140-2 certified cyphers can be used
- - Encryption keys Stored in the Monitor daemon (MON)
- Object Gateway (RGW)

 - Data is encrypted at rest relying on OSD strategy Alternatively, data can be encrypted at ingestion with locally managed keys Keys can be managed externally with HashiCorp Vault KMS OpenStack Barbican and KMIP-compatible KMS support is also available 0
 - 0
 - \bigcirc

Cloud Native Security

CONFERENCE NOBTH AMERICA

30

LUKS

Encryption in transit

- Data in transit
 - Ceph's internal protocol can be encrypted as a Messenger v.2.1 protocol option Legacy cleartext protocol is still default for compatibility reasons All data at rest is encrypted irrespective of access protocol FIPS 140-2 certified cyphers can be used 0
 - Ο
 - Ο
 - 0
- - Client and public security zones
 TLS security can be used from Object Gateway to S3 clients.
 TLS termination at HAproxy a special case
- Network hygiene
 Firewalld at individual nodes

Encryption in transit

- Data in transit
 - Ceph's internal protocol can be encrypted as a Messenger v.2.1 protocol option Legacy cleartext protocol is still default for compatibility reasons All data at rest is encrypted irrespective of access protocol FIPS 140-2 certified cyphers can be used 0
 - Ο
 - Ο
 - 0
- - Client and public security zones
 TLS security can be used from Object Gateway to S3 clients.
 TLS termination at HAproxy a special case
- Network hygiene
 Firewalld at individual nodes

Rook specific

- CRDs can be used to encode security preferences Example: client configuration Example: RGW certificate
- Rook provides at-rest data encryption as discussed Setup of Msgr v.2 in-flight encryption is still to come Use software-defined cloud network fabric to segregate traffic
- Standard k8s user permissions apply to persistent volumes Nothing Rook needs to do here
- - CSI driver supports KMS PVs can be encrypted with individual keys

Control Plane

SSH

- 0
- Cephadm, ceph-ansible and other tools User (cephadm or ceph) with password-less root access is used Access is secured with SSH keys Ο
- Ο
- Port 22 \bigcirc
- Management Dashboard

 - TLS on port 443 (operator facing (storage access zone) Dashboard access zone often tailored by operators to suit local threat model 0
- - Manager (MGR) Ceph protocol on port range 6800-7300 (storage access zone)

Identity and access

Cephx

- Shared secret keys are in use for authentication Mechanism protects cluster from MITM attacks Authentication and authorization are aon by default If user is not supplied, it is assumed to be client.admin

- Object Gateway (RGW)

 S3 user: access key and secret model
 Swift user: access key and secret model
 Swift user: access key and secret model
 Note that default Swift user is sub-user of S3 user, deleting S3 user will delete the Swift user as well
 Administrative user: access key and secret with access to administrative API
 User authentication is stored in Ceph pools
- LDAP and Active Directory users can be used as identity services Secure LDAP is recommended
- OpenStack Keystone
 - Ceph supports using OpenStack Keystone to authenticate Object Gateway users

Auditing

- Operator actions
 - Stored in /var/log/ceph/ceph.audit.log

For example:

2018-08-13 21:50:28.727176 mon.reesi001 mon.0 172.21.2.201:6789/0 2097902 : audit [INF] from='client.348389421 -' entity='client.admin' cmd=[{"prefix": "osd set", "key": "nodown"}]: dispatch

2018-08-13 21:50:28.872992 mon.reesi001 mon.0 172.21.2.201:6789/0 2097904 : audit [INF] from='client.348389421 -' entity='client.admin' cmd='[{"prefix": "osd set", "key": "nodown"}]': finished

 In distributed systems, actions may start on one node (dispatch) and propagate to others (finished)

- RADOS
 - End users generally do not have the ability to read, write or delete objects directly in a storage pool
- Ceph Block Device (RBD), Object Gateway (RGW), Filesystem (MDS)
 Users can create, delete, modify volume images, objects or files
 Deletion destroys corresponding RADOS object in unrecoverable manner
 RBD pools may provide "trash bin" functionality with spare capacity
 RGW bucket lifecycle supports versioning. Residual data artefacts may persist in
 - - storage medium
- Secure deletion
 - Sanitize retired media by encrypting the OSD contents at rest, and replacing the 0 encryption key

Infrastructure hardening

- SELinux
 - Red Hat Ceph storage clusters default to SELinux in enforcing mode 0
- - FIPS 140-2 support Certified cryptography can be imported in RHEL "FIPS mode" setup RHEL 8.2 is the most recent certified version
- Hardened binaries
 - SECCOMP 0
 - PIE 0
 - -D FORTIFY SOURCE=2 0
 - RELRO \bigcirc
 - BIND NOW 0
 - ASLR (all varieties) 0
 - 0 ...

Thank you!

CREDITS

Federico Lucifredi Ana McTaggart Michael Hackett J.C. Lopez Travis Nielsen Sébastien Han

© 2021 by the authors CC-BY-SA

Cloud Native Security CONFERENCE North America