CHOOSING THE RIGHT STORAGE FOR YOUR OPENSTACK CLOUD

Federico Lucifredi Product Management Director, Red Hat <u>federico@redhat.com</u> @0xF2

CLOUD & STORAGE

BUSINESS NEEDS CLOUD STORAGE

Illusion of Infinite Capacity

On Demand Scalability

Pay As You Go

Self Service

- Massive scalability
- Easy to expand
- Elasticity
- No more guessing about future.
- API driven

- On demand rapid provisioning and operations.
- Speed and agility

- Unified
 Management
- Effective Monitoring and Metering.
- Deeper Integration.

- Robust User
 Interface
- Simplified API
- Multi-tenancy

STORAGE STRATEGIES

STORAGE IS ALL ABOUT WORKLOADS ! & IT COMES IN ALL SHAPES AND SIZES !

UNDERSTANDING YOUR WORKLOADS

OTHER FACTORS

OPENSTACK STORAGE

OPENSTACK NEEDS STORAGE

HYBRID STORAGE?

SDS is well aligned with translating illusion of infinite capacity into reality.

- Is SDS the right option for all storage requirements?
- Should I go with SAN/NAS storage back end?
- Should I have a hybrid storage strategy?
- An answer for this highly depends on how predictable the workload is and if the environment is
 - An on premise private cloud
 - Or Public cloud.

RED HAT

SHARED STORAGE

Connecting each component to the same shared storage is ideal.

- Should we use different storage backends for each component?
 - Object Storage/NFS for Glance.
 - Local storage for Nova ephemeral
 - Block storage for Cinder.

RED HAT

- Should we use the same storage back end for each component?
- This is a better approach than connecting each component to different storage.

INTEGRATED STORAGE

How deep is the storage integration with openstack?

- Integration between Nova, Glance and Cinder when provisioning instance.
- Create a volume from image.
- Create image from volume.
- Managing Snapshots
- Backup

RED HAT

ORAGE

Does the storage vendor provide a driver to integrate OpenStack with Storage? If yes, is it tested and certified? To what extent it's integrated?

INTEGRATED STORAGE

• Ask Your Storage Vendor for a POC

- Technical explanation of how each functions are handled by the driver.
- Showcase how much time it takes for large scale storage tasks to finish.
 - Booting 100+ instances via boot from volumes.
- Is the driver certified by OpenStack vendor (Integration testing) and how is it distributed?
- Can I integrate your storage using vendor deployment tools?

• Benefits Of Strong Integration

- Saves disk space on compute nodes and storage nodes.
- Saves network bandwidth.
- Reduce the time required for the operations, especially at scale.
 - Rapid provisioning of storage for workload requirements.

FUTURE-PROOF

Is the selected storage going to allow you to meet your future storage requirements for laaS+ and PaaS use cases? BigData as a Service, DBaaS, Manila, etc.

- Initiate a discussion with storage vendor to what extent it supports your future storage requirements.
 - Support for PaaS
 - Support for containers
 - o DBaaS
 - Big Data as a Service
 - Manila File sharing as a service

IN A NUTSHELL

RED HAT CEPH STORAGE

ALL IN ONE

CEPH IS NOT JUST SCALE OUT CAPACITY

IOPS Optimized	Throughput Optimized	Cost / Capacity Optimized
NVMe SSD in SLED chassis	SSD, HDD in standard / dense chassis	HDD in dense / ultra-dense chassis
High IOPS / GB	High MB/s throughput	Low cost / GB
Smaller, random IO	Large, sequential IO	Sequential IO
Read / write mix	Read / write mix	Write mostly
Use Case: MySQL	Use Case: Rich Media	Use Case: Active Archives

DATA PROTECTION SCHEMES

RED HAT

FEATURES & FUNCTIONALITIES

MULTI-SITE CONFIGURATION

- Configure each Ceph Object Gateway to work in an active active zone configuration, allowing for writing to non-master zone
- Global object storage clusters with a single namespace
- Enables deployment of clusters across multiple geographic locations
- Clusters synchronize, allowing users to read from or write to the closest one

RBD MIRRORING

- Multi-site replication for block devices
- Replicates virtual block devices across regions
- Designed for disaster recovery and archival
- Integration with Cinder Volume Replication (OSP-10)

BACKUP STRATEGIES

- Volume backup with cinder backup driver
- Backs up volumes of any type to a Ceph back-end store
- Volume snapshot with cinder volume snapshot
- Establish backup policies for datas in the VMs

RED HAT CEPH STORAGE 2 PERFORMANCE: BLUESTORE (TECH PREVIEW)

BlueStore is a new Ceph storage backend optimized for modern media

- Replaces FileStore, which was designed for HDDs
- Supports flexible media topologies (flash, K/V drives, persistent memory)
- Eliminates the need for an underlying filesystem or dedicated journal device
- Provides a 2-3X performance boost

RED HAT CEPH TECHNICAL REFERENCES

RHCS Test Drive : Hands-on Lab for Ceph

http://bit.ly/ceph-test-drive

RHCS Hardware Selection Guide

★ http://bit.ly/RHCS-hardware-selection-guide

RHCS Hardware Configuration Guide

http://bit.ly/RHCS-hw-configuration-guide

MySQL on RHCS Reference Architecture

http://bit.ly/MySQL_DB-on-RHCS

RHCS on Intel CPUs and SSDs Config Guide

★ http://bit.ly/RHCS-on-Intel

RHCS Ready Supermicro Server SKUs

★ http://bit.ly/RHCS-SuperMicro-SKU

RHCS on CISCO UCS Servers

http://bit.ly/RHCS-on-Cisco-UCS

RHCS on QCT Servers Perf & Sizing Guide

http://bit.ly/RHCS-on-QCT

RHCS on Supermicro Servers Perf & Sizing Guide

★ http://bit.ly/RHCS-on-SuperMicro

RHCS on DELL EMC PE 730xd Servers Perf & Sizing Guide

http://bit.ly/RHCS-on-DellEMC-PE730xd

RHCS on DELL EMC DSS 7000 Servers Perf & Sizing Guide

★ http://bit.ly/RHCS-on-DellEMC-DSS7000

RHCS on Samsung Sierra Flash Array Perf & Sizing Guide

★ http://bit.ly/RHCS-on-Samsung-flash-array

RHCS Ready QCT Server SKUs

http://bit.ly/RHCS-QCT-SKU

RHCS on SanDisk Infiniflash

http://bit.ly/RHCS-on-Sandisk-Infiniflash

RHCS and RHOSP HCI Ref. Arch

★ http://bit.ly/RHCS-RHOSP-HCI

THANK YOU

Federico Lucifredi Product Management Director, Red Hat <u>federico@redhat.com</u> @0xF2

