
Home Page

Title Page

JJ II

J I

Page 1 of 35

Go Back

Full Screen

Close

Quit

How to Write Shared
Libraries
Ulrich Drepper

drepper@redhat.com

June 23, 2002

mailto:drepper@redhat.com


Home Page

Title Page

JJ II

J I

Page 2 of 35

Go Back

Full Screen

Close

Quit

Introduction

Actually, it is Dynamic Shared Objects (DSOs)

Primary motivation: save and share resources
better physical memory usage
smaller binaries use less disk space

ELF makes it easy to create DSOs

Entices people to use DSOs for abstraction



Home Page

Title Page

JJ II

J I

Page 3 of 35

Go Back

Full Screen

Close

Quit

Problems

1. Costs of applications and DSOs different

DSOs have dynamic cost

2. References in ELF very flexible and powerful

. . . but slower than in a.out and COFF

3. People write DSOs just like application code



Home Page

Title Page

JJ II

J I

Page 4 of 35

Go Back

Full Screen

Close

Quit

Solutions

Explain how

• ELF works (at runtime)

• the implementation can be changed to automat-
ically do some of the work

• programming affects how ELF code is generated

• code can be rewritten



Home Page

Title Page

JJ II

J I

Page 5 of 35

Go Back

Full Screen

Close

Quit

How does ELF work

Statically linked applications are of no interest

The kernel

1. maps executable (or DSO) in memory

2. locates the dynamic segment (ELF Header
→ Program Header → Dynamic segment
PT DYNAMIC)

3. determines loader (PT INTERP entry)

4. maps the loader as well (overlay)

5. constructs auxiliary vector

6. starts the loader program



Home Page

Title Page

JJ II

J I

Page 6 of 35

Go Back

Full Screen

Close

Quit

How does ELF work II

The Loader/Dynamic Linker

1. relocates itself

2. read information from auxiliary vector

3. builds data structures for the application loaded
by the kernel

4. finds, loads, and relocates dependencies (recur-
sively)

5. jumps to start address given in auxiliary vector



Home Page

Title Page

JJ II

J I

Page 7 of 35

Go Back

Full Screen

Close

Quit

Loading DSOs

The Loader/Dynamic Linker

1. loads first block of the object (ElfXX Ehdr )

2. locates program header usinge phoff and
e phnum

3. finds all loadable segments (PT LOAD)

4. locates dynamic section (PT DYNAMIC)

5. initializes hash table

6. sets up PLT/GOT

7. relocates DSO

8. sort DSOs



Home Page

Title Page

JJ II

J I

Page 8 of 35

Go Back

Full Screen

Close

Quit

Symbol Resolution

The following steps have to be performed for each
symbol needed in each of the DSOs:

1. determine the scope (which DSOs to look in and
in which order)

2. compute ELF hash sum of symbol

3. in first/next DSO in scope

(a) determine hash bucket

(b) string comparison with the addressed sym-
bols name

(c) if necessary, string comparison with version
name

(d) stop if matching

(e) otherwise continue with next element in hash
chain

4. if not found, continue with next DSO in scope



Home Page

Title Page

JJ II

J I

Page 9 of 35

Go Back

Full Screen

Close

Quit

User Influence

• Number of DSOs

design decision

sometimes not in the programmer’s hand

• Text Relocations (must be avoided)

• Number of Symbols

• Number of PLT entries

• Number of relocations

i.e., number of GOT entries

We ignore the first point here



Home Page

Title Page

JJ II

J I

Page 10 of 35

Go Back

Full Screen

Close

Quit

Text Relocations

A relocation against a read-only segment

Requires making the segment writable→ cannot be
shared anymore

Also prevents prelinking

Solution:

• compile C/C++/Java/Ada/. . . code with-fpic

• use-fPIC when necessary

• follow PIC programming rules in assembler
code



Home Page

Title Page

JJ II

J I

Page 11 of 35

Go Back

Full Screen

Close

Quit

Number of Symbols

Obvious problem: large symbol table data structure
the dynamic symbol table is present at runtime

Secondary: symbol resolution gets slower due to
longer hash chains

readelf -I binary

Unnecessarily large API: even interface not in-
tended for use can be accessiable



Home Page

Title Page

JJ II

J I

Page 12 of 35

Go Back

Full Screen

Close

Quit

Number of PLT/GOT entries

This means: number of relocations

PLTs are necessary for undefined symbols

but using, for instance, both fgetc and
getchar is not necessary

Internal use of defined functions jump though PLT
→ symbol resolution and indirect jump

Reducing number of GOT entries (= relocations)
first priority

Second priority is converting normal relocations
into relative ones (faster to process)



Home Page

Title Page

JJ II

J I

Page 13 of 35

Go Back

Full Screen

Close

Quit

Measuring ld.so Performance

Total runtime of the application measure null
program with dependencies

ld.so can measure more and more exact
env LD DEBUG=statistics program arguments

> env LD_DEBUG=statistics /bin/echo
runtime linker statistics:

total startup time in dynamic loader: 783596 clock cycles
time needed for relocation: 398588 clock cycles (50.8%)

number of relocations: 132
number of relocations from cache: 5

time needed to load objects: 207140 clock cycles (26.4%)

runtime linker statistics:
final number of relocations: 188

final number of relocations from cache: 5



Home Page

Title Page

JJ II

J I

Page 14 of 35

Go Back

Full Screen

Close

Quit

Other Measures

Number of relocations:
readelf -d output contains

• DT RELENT: size of one relocation entry

• DT RELSZ: size of relocation table

• DT RELCOUNT: number of relative reloca-
tions (if combining relocations)

• DT PLTRELSZ: size of PLT relocation table



Home Page

Title Page

JJ II

J I

Page 15 of 35

Go Back

Full Screen

Close

Quit

char versusconst char

Often found:
char *s = "some string";

Compiler warns but still it is ignored

Linker puts read-only strings in “mergeable” sec-
tions

const char *s = "some string";
const char *t = "string";

Only some string stored in object file



Home Page

Title Page

JJ II

J I

Page 16 of 35

Go Back

Full Screen

Close

Quit

const char* versusconst char[]

Compile as DSO:

const char *s = "some string";

Creates one relative relocation and 4 bytes data

Very often s need not be a variable

const char s[] = "some string";



Home Page

Title Page

JJ II

J I

Page 17 of 35

Go Back

Full Screen

Close

Quit

Error Codes and Messages

Often found:
static const char *msgs[] = {

[ERR1] = "message for err1",
[ERR2] = "message for err2",
[ERR3] = "message for err3"

};

const char *errstr (int nr) {
return msgs[nr];

}

Good practice, bad implementation!

One relocation per array element,msgs in .data ,
not .rodata



Home Page

Title Page

JJ II

J I

Page 18 of 35

Go Back

Full Screen

Close

Quit

Error Codes and Messages II

Replace array of strings with one string:

static const char msgstr[] =
"message for err1\0"
"message for err2\0"
"message for err3";

};
static const size_t msgidx[] = {

0,
sizeof ("message for err1"),
sizeof ("message for err1")
+ sizeof ("message for err2")

};
const char *errstr (int nr) {

return msgstr + msgidx[nr];
}



Home Page

Title Page

JJ II

J I

Page 19 of 35

Go Back

Full Screen

Close

Quit

Function Pointers

Very reasonable code in executable:

static int a0 (int a) { return a+0; }
static int a1 (int a) { return a+1; }
static int a2 (int a) { return a+2; }

static int (*fps[])(int) = {
[0] = a0,
[1] = a1,
[2] = a2

};
int add (int a,int b) {

return fps[b] (a);
}

3 relocations,fps in .data



Home Page

Title Page

JJ II

J I

Page 20 of 35

Go Back

Full Screen

Close

Quit

Function Pointers II

Better useswitch :
int add (int a, int b) {

switch (b) {
case 0:

return a+0;
case 1:

return a+1;
case 2:

return a+2;
}

}

All PC-relative jumps, no relocations



Home Page

Title Page

JJ II

J I

Page 21 of 35

Go Back

Full Screen

Close

Quit

Local goto s

Not many people use it but it’s very effective:

int add (int a, int b) {
static const void *labs[] = {

&&a0, &&a1, &&a2
};
void *targ = labs[b];
goto *targ;

a0:
return a+0;

a1:
return a+1;

a2:
return a+2;

}

3 relocations,labs in .data



Home Page

Title Page

JJ II

J I

Page 22 of 35

Go Back

Full Screen

Close

Quit

Local goto s II
int add (int a, int b) {

static const unsigned off[] = {
&&a0-&&a0, &&a1-&&a0, &&a2-&&a0

};
void *targ = &&a0 + off[b];
goto *targ;

a0:
return a+0;

a1:
return a+1;

a2:
return a+2;

}

No relocation, compile-time constantoff array



Home Page

Title Page

JJ II

J I

Page 23 of 35

Go Back

Full Screen

Close

Quit

Exporting Internal Functions

Internal functions often exported (especially if not
in the same source file)

int mult (int a, int b) {
return a * b;

}
int multadd (int a, int b, int c) {

return mult (a, b) + c;
}

• mult call uses ELF name lookup

• call is indirect through PLT



Home Page

Title Page

JJ II

J I

Page 24 of 35

Go Back

Full Screen

Close

Quit

Exporting Internal Functions II

Always usestatic if function is not used outside
source file

Sometimes adjusting interfaces to eliminating ex-
ported functions is beneficial

static int mult (int a, int b) {
return a * b;

}
int multadd (int a, int b, int c) {

return mult (a, b) + c;
}



Home Page

Title Page

JJ II

J I

Page 25 of 35

Go Back

Full Screen

Close

Quit

Exporting Internal Functions III

If the function is used in another file:

Tell the compiler everything

extern int mult (int a, int b)
__attribute__((visibility("hidden")));

int multadd (int a, int b, int c) {
return mult (a, b) + c;

}

Compiler knows the function is not exported from
the DSO (the latter is performed by the linker)



Home Page

Title Page

JJ II

J I

Page 26 of 35

Go Back

Full Screen

Close

Quit

Exporting Internal Functions IV

For most architectures same result using linker
maps:

$ cat multadd.sym
{ global: multadd; local: mult; };
$ gcc -shared -o multadd.so multadd.c \

-fPIC \
-Wl,--version-script,multadd.sym

$ readelf -s multadd.so|grep mult
7: 00000590 10 FUNC LOCAL DEFAULT 10 mult

Symbol is not exported but compiler already did its
work

Works for IA-32, does not work for SH



Home Page

Title Page

JJ II

J I

Page 27 of 35

Go Back

Full Screen

Close

Quit

Exporting Internal Functions V

libtool provides -export-symbols option

$ cat multadd.exp
multadd
$ libtool --mode=link gcc -o multadd.so \

-export-symbols multadd.exp multadd.o

But: this only modifies the symbol table

Relocations and indirect jumps remain



Home Page

Title Page

JJ II

J I

Page 28 of 35

Go Back

Full Screen

Close

Quit

Exporting Internal Variables

Similar to functions but marking variables as hid-
den is always necessary:

C code:
extern int a;
a

IA-32 PIC code:
movl a@GOT(%ebx),%eax
movl (%eax),%eax

a hidden, IA-32 PIC code:
movl a@GOTOFF(%ebx),%eax

Using a linker map cannotfix the code the compiler
already generated



Home Page

Title Page

JJ II

J I

Page 29 of 35

Go Back

Full Screen

Close

Quit

Calling Exported Functions

Often functions, which must be exported, are used
internally

If no interposition is wanted, use alias:

int mult (int a, int b) {
return a * b;

}
extern __typeof (mult) mult_internal

__attribute__((alias("mult"),
visibility("hidden")));

int multadd (int a, int b, int c) {
return mult_internal (a, b) + c;

}



Home Page

Title Page

JJ II

J I

Page 30 of 35

Go Back

Full Screen

Close

Quit

Stable ABIs

DSOs with the same SONAME must be binary com-
patible:

No documented ABI must change

APIs couldchange

Sooner or later an incompatible change is necessary

Option 1: Create DSO with new SONAME name,
leave old file undisturbed

Option 2: Use Symbol Versioning



Home Page

Title Page

JJ II

J I

Page 31 of 35

Go Back

Full Screen

Close

Quit

Stable ABIs II

Advantages of using new SONAME:

1. Portable

2. Same SONAME reference on all platforms

3. Symbol versioning available only on Linux and
Hurd

Disadvantages:

1. DSO nightmare

2. Large amount of duplication in > 1 DSO (disk
space, memory usage)

3. How to phase out old DSO files?

No reason to not special-case Linux and Hurd!



Home Page

Title Page

JJ II

J I

Page 32 of 35

Go Back

Full Screen

Close

Quit

Stable ABIs III

Before:

int ext;
int foo (int a)
{

ext = some_function (a);
return 0;

}

Now:

int foo (int a, int *r)
{

*r = some_function (a);
return 0;

}



Home Page

Title Page

JJ II

J I

Page 33 of 35

Go Back

Full Screen

Close

Quit

Stable ABIs IV

With symbol versioning:

int ext;
int foo_old (int a)
{

ext = some_function (a);
return 0;

}
asm (".symver foo_old, foo@ABI_1.0");
int foo_new (int a, int *r)
{

*r = some_function (a);
return 0;

}
asm (".symver foo_new, foo@@ABI_2.0");



Home Page

Title Page

JJ II

J I

Page 34 of 35

Go Back

Full Screen

Close

Quit

Stable ABIs V
$ cat foo.sym
ABI_1.0 {

global: foo; local: *;
};
ABI_2.0 {

global: foo;
} ABI_1.0;
$ gcc -shared -fpic -o foo.so foo.c \

-Wl,--version-script,foo.sym
$ nm foo.so|grep foo
000006d8 T foo@@ABI_2.0
000006a0 T foo@ABI_1.0
000006d8 t foo_new
000006a0 t foo_old



Home Page

Title Page

JJ II

J I

Page 35 of 35

Go Back

Full Screen

Close

Quit

Stable ABIs VI

Very small impact on runtime performance

If the two versions differ only slightly, simple stub
versions can be versioned, which call the real im-
plementation

Symbol versioning can also help to retire an inter-
face (existing uses allowed, new ones are not)

Using local: * helps to avoid nasty surprises

Not all compatibility problems can be handled this
way, but many/most


